Skip to main content
Log in

The Hemostatic Defect of Cardiopulmonary Bypass

  • Published:
Journal of Thrombosis and Thrombolysis Aims and scope Submit manuscript

Abstract

Cardiac surgery involving cardiopulmonary bypass is a common yet complex procedure that results in considerable disruption of hemostasis during and following surgery. Despite the relatively common and widespread use of this procedure, there remains a significant peri-operative risk of both thrombosis and hemorrhage in some patients. This is known as the hemostatic defect of cardiopulmonary bypass.

Strategies including the use of pharmacological agents, hemodilution, autologous blood transfusion, rapid in-theatre monitoring of hemostatic potential with fine-tuning of the degree of heparinization, minimally invasive surgery and the use of biologically coated cardiopulmonary bypass equipment have been employed to ameliorate the effects of cardiopulmonary bypass on hemostasis. However there exists a fine line between preventing hemorrhage and promoting thrombosis. Likewise attempts to prevent thrombosis may result in increased hemorrhage. Research into many strategies for minimizing the hemostatic defect of cardiopulmonary bypass is incomplete, with safety and efficacy the subjects of intensive investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gibbon JH. Application of a mechanical heart and lung apparatus to cardiac surgery. Minn Med J 1954;37:171-174.

    Google Scholar 

  2. Tinker JH, Roberts SL. Management of cardiopulmonary bypass. In: Kaplan JA, ed. Cardiac Anesthesia. Vol. 2. New York: Grune & Stratton Inc, 1987:895-926.

    Google Scholar 

  3. Baumgartner FJ. Cardiopulmonary bypass and myocardial protection. In: Baumgartner FJ, ed. Cardiothoracic Surgery. Austin: Landes Bioscience, 1999:14-32.

    Google Scholar 

  4. King RM, White RD. Oxygenators and hemodilution in cardiopulmonary bypass. In: Tarhan S, ed. Cardiovascular Anesthesia and Postoperative Care. Chicago: Year Book Medical Publishers Inc, 1989:285-294.

    Google Scholar 

  5. Brister SJ, Ofosu FA, Buchanan MR. Thrombin generation during cardiac surgery: Is heparin the ideal anticoagulant? Thromb Haemostas 1993;70:259-262.

    Google Scholar 

  6. Ranucci M, Isgro G, Cazzaniga A, Soro G, Menicanti L, Frigiola A. Predictors for heparin resistance in patients undergoing coronary artery bypass grafting. Perfusion 1999;14:437-442.

    Google Scholar 

  7. Esposito RA, Culliford AT, Colvin SB, Thomas SJ, Lackner H, Spencer FC. Heparin resistance during cardiopulmonary bypass: The role of heparin pretreatment. J Thorac Cardiovasc Surg 1983;85:346-353.

    Google Scholar 

  8. Staples MH, Dunton RF, Karlson KJ, Leonardi HK, Berger RL. Heparin resistance after preoperative heparin therapy or intraaortic balloon pumping. Ann Thorac Surg 1994;57:1211-1216.

    Google Scholar 

  9. Bock SC. Antithrombin III and heparin cofactor II. In: Colman RW, Hirsh J, Marder VJ, Clowes AW, George JN, eds. Hemostasis and Thrombosis: Basic Principles & Clinical Practice. Philadelphia: Lippincott, Williams & Wilkins, 2001:321-333.

    Google Scholar 

  10. Robinson HC, Horner AA, Hook M, Ogren S, Lindahl U. A proteoglycan form of heparin and its degradation to single chain molecules. J Biol Chem 1978;253:6687-6693.

    Google Scholar 

  11. Lam LH, Silbert JE, Rosenberg RD. The separation of active and inactive forms of heparin. Biochem Biophys Res Comm 1976;69:570-577.

    Google Scholar 

  12. Hook M, Bjork I, Hopwood J, Lindahl U. Anticoagulant activity of heparin: Separation of high-activity and lowactivity heparin species by affinity chromatography on immobilized antothrombin. FEBS Lett 1976;66:90-93.

    Google Scholar 

  13. Lindahl U, Backstrom G, Hook M, Thunberg L, Fransson LA, Linker A. Structure of the antithrombin binding site in heparin. Proc Nat Acad Sci USA 1979;76:3198- 3202.

    Google Scholar 

  14. Carlson TH, Simon TL, Atencio AC. In vivo behavior of human radioiodinated antithrombin III: Distribution among three physiologic pools. Blood 1985;66:13-19.

    Google Scholar 

  15. Olsson P, Lagergren EK. The elimination from plasma of intravenous heparin. Acta Med Scand 1963;173:619-627.

    Google Scholar 

  16. Estes JW. Kinetics of the anticoagulant effects of heparin. JAMA 1970;212:1492-1495.

    Google Scholar 

  17. Bjornsson TD, Wolfram BS, Kitchell BB. Heparin kinetics determined by three assay methods. Clin Pharmacol Ther 1982;31:104-113.

    Google Scholar 

  18. Bull BS, Huse WM, Brauer SD, Korpman RA. Heparin therapy during extracorporeal circulation. J Thorac Cardiovasc Surg 1975;69:685-689.

    Google Scholar 

  19. Carlstrom AS, Lieden K, Bjork I. Decreased binding of heparin to antithrombin following the interaction between antithrombin and thrombin. Thromb Res 1977;11:785-797.

    Google Scholar 

  20. Peterson CB, Blackburn MN. Antithrombin conformation and the catalytic role of heparin. I. Does cleavage by thrombin induce structural changes in the heparin-binding region of antithrombin? J Biol Chem 1987;262:7552-7558.

    Google Scholar 

  21. Briginshaw GF, Shanberge JN. Identification of two distinct heparin cofactors in human plasma. II. Inhibition of thrombin and activated factor X. Thromb Res 1974;4:463-477.

    Google Scholar 

  22. Tollefsen DM, Blank MK. Detection of a new heparindependent inhibitor of thrombin in human plasma. J Clin Invest 1981;68:589-596.

    Google Scholar 

  23. Tollefsen DM, Majerus DW, Blank MK. Heparin cofactor II: Purification and properties of a heparin-dependent inhibitor of thrombin in human plasma. J Biol Chem 1982;257:2162-2169.

    Google Scholar 

  24. Altman R, Scazziota A, Rouvier J. Efficacy of unfractionated heparin, low molecular weight heparin and both combined for releasing total and free tissue factor pathway inhibitor. Haemostasis 1998;28:229-235.

    Google Scholar 

  25. Broze GJ. Tissue factor pathway inhibitor and the current concept of blood coagulation. Blood Coagul Fibrinol 1995;6:S7-13.

    Google Scholar 

  26. Collen D, Lijnen HR, Todd PA. Tissue-type plasminogen activator: A review of its pharmacology and therapeutic use as a thrombolytic agent. Drugs 1989;38:346-388.

    Google Scholar 

  27. O'Brien JR, Shoobridge SM, Finch WJ. Comparison of the effect of heparin and citrate on platelet aggregation. J Clin Pathol 1969;22:28-31.

    Google Scholar 

  28. Eika C. Anticoagulant and platelet aggregating activities of heparin. Thromb Res 1973;2:349-360.

    Google Scholar 

  29. Thompson C, Forbes CD, Prentice CRM. Potentiation of platelet aggregation and adhesion by heparin in vitro and in vivo. Clin Sci Mol Med 1973;45:485-494.

    Google Scholar 

  30. Salzman EW, Rosenberg RD, Smith MH, Lindon JN, Favreau L. Effect of heparin and heparin fractions on platelet aggregation. J Clin Invest 1980;65:64-73.

    Google Scholar 

  31. Saba HI, Saba SR, Morelli GA. Effect of heparin on platelet aggregation. Am J Hematol 1984;17:295-306.

    Google Scholar 

  32. Westwick J, Scully MF, Poll C, Kakkar VV. Comparison of the effects of low molecular weight heparin and unfractionated heparin on activation of human platelets in vitro. Thromb Res 1986;42:435-447.

    Google Scholar 

  33. Saffle JR, Russo J, Dukes GE, Warden GD. The effect of low-dose heparin therapy on serum platelet and transaminase levels. J Surg Res 1980;28:297-305.

    Google Scholar 

  34. Schwartz KA, Royer G, Kaufman DB, Penner JA. Complications of heparin administration in normal individuals. Am J Hematol 1985;19:355-363.

    Google Scholar 

  35. Eika C. Platelet refractory state induced by heparin. Scand J Haematol 1972;9:665-672.

    Google Scholar 

  36. Shojania AM, Turnbull G. Effect of heparin on platelet count and platelet activation. Am J Hematol 1987;26:255-262.

    Google Scholar 

  37. Horne MKI, Chao ES. The effect of molecular weight on heparin binding to platelets. Br J Haematol 1990;74:306-312.

    Google Scholar 

  38. Kelton JG, Sheridan D, Santos A, et al. Heparin induced thrombocytopenia: Laboratory studies. Blood 1988;72:925-930.

    Google Scholar 

  39. Cines DB, Kaywin P, Bina M, Tomaski A, Schreiber AD. Heparin associated thrombocytopenia. N Engl J Med 1980;303:788-795.

    Google Scholar 

  40. Warkentin TE, Chong BH, Greinacher A. Heparin induced thrombocytopenia: Toward consensus. Thromb Haemostas 1998;79:1-7.

    Google Scholar 

  41. Ziporen L, Li ZQ, Park KS, et al. Defining an antigenic epitope on platelet factor 4 associated with heparin-induced thrombocytopenia. Blood 1998;92:3250-3259.

    Google Scholar 

  42. Schwartz BS. Heparin: What is it? How does it work? Clin Cardiol 1990;13:V112-V115.

    Google Scholar 

  43. Ofosu FA, Gray E. Mechanisms of action of heparin: Applications to the development of derivatives of heparin and heparinoids with antithrombotic potential. Semin Thromb Hemostas 1988;14:9-17.

    Google Scholar 

  44. Despotis GJ, Joist JH, Hogue CW Jr., et al. The impact of heparin concentration and activated clotting time monitoring on blood conservation. A prospective, randomized evaluation in patients undergoing cardiac operation. J Thorac Cardiovasc Surg 1995;110:46-54.

    Google Scholar 

  45. Despotis GJ, Joist JH. Anticoagulation and anticoagulation reversal with cardiac surgery involving cardiopulmonary bypass: An update. J Cardiothorac Vasc Anesth 1999;13:18-29.

    Google Scholar 

  46. Hashimoto K, Sasaki T, Takakura H, Onoguchi K, Nagahori R, Takeuchi S. Real time measurement of Hemostasis and Cardiopulmonary Bypass 139 heparin concentration during cardiopulmonary bypass. J Cardiovasc Surg 1999;40:645-651.

    Google Scholar 

  47. Linden MD, Erber WN, Schneider M. Heparin management during cardiopulmonary bypass. J Cardiovasc Surg 2001;42:431-433.

    Google Scholar 

  48. Hashimoto K, Yamagishi M, Sasaki T, Nakano M, Kurosawa H. Heparin and antithrombin III levels during cardiopulmonary bypass: Correlation with subclinical plasma coagulation. Ann Thorac Surg 1994;58:799-804.

    Google Scholar 

  49. DeLaria GA, Tyner JJ, Hayes CL, Armstrong BW. Heparin-protamine mismatch. A controllable factor in bleeding after open heart surgery. Arch Surg 1994;129:944-950.

    Google Scholar 

  50. Ray MJ, Marsh NA, Hawson GA. Relationship of fibrinolysis and platelet function to bleeding after cardiopulmonary bypass. Blood Coagul Fibrinol 1994;5:679-685.

    Google Scholar 

  51. Harker LA, Malpass TW, Branson HE. Mechanism of abnormal bleeding in patients undergoing cardiopulmonary bypass: Acquired transient platelet dysfunction associated with selective alpha-granule release. Blood 1980;56:824-834.

    Google Scholar 

  52. Hattersley PG. Activated coagulation time of whole blood. JAMA 1966;196:436-440.

    Google Scholar 

  53. Wolk LW, Wilson RF, Burdick M, et al. Changes in antithrombin, antiplasmin, and plasminogen during and after cardiopulmonary bypass. Am Surg 1985;51:309-313.

    Google Scholar 

  54. Khuri SF, Michelson AD, Valeri CR. The effects of cardiopulmonary bypass on hemostasis. In: Loscabo J, Schafer AI, eds. Thrombosis & Hemorrhage. Cambridge: Blackwell Science, 1993:1051-1073.

    Google Scholar 

  55. Gravlee GP, Whitaker CL, Mark LJ, Rogers AT, Royster RL, Harrison GA. Baseline activated coagulation time should be measured after surgical incision. Anesth Analg 1990;71:549-553.

    Google Scholar 

  56. Niles SD, Sutton RG, Ploessl J, Pennell B. Correlation of ACT as measured with three commercially available devices with circulating heparin levels during cardiac surgery. J Extra Corpor Technol 1995;27:197-200.

    Google Scholar 

  57. Hattersley P. Progress report: The activated coagulation time of whole blood (ACT). AmJ Clin Pathol 1976;66:899-904.

    Google Scholar 

  58. Bull BS. The reliability of the ACT for monitoring bypass anticoagulation. Journal of Cardivascular Surgery 1978;57:790-792.

    Google Scholar 

  59. Esposito RA, Culliford AT, Colvin SB, Thomas SJ, Lackner H, Spencer FC. The role of the activated clotting time in heparin administration and neutralization for cardiopulmonary bypass. J Thorac Cardiovasc Surg 1983;85:174-185.

    Google Scholar 

  60. Lee R, White P. A clinical study of the coagulation time of blood. Am J Med Sci 1913;145:495-503.

    Google Scholar 

  61. Margolis J. The kaolin clotting time: A rapid one-stage method for diagnosis of coagulation defects. J Clin Pathol 1958;11:406-409.

    Google Scholar 

  62. Mattox KL, Guinn GA, Rubio PA, Beall AC. Use of the activated coagulation time in intraoperative heparin reversal for cardiopulmonary operations. Ann Thorac Surg 1975;19:634-638.

    Google Scholar 

  63. Flom-Halvorsen HI, Ovrum E, Abdelnoor M, Bjornsen S, Brosstad F. Assessment of heparin anticoagulation: Comparison of two commercially available methods. Ann Thorac Surg 1999;67:1012-1016.

    Google Scholar 

  64. Pifarre R, Istanbuoli M, Sinno J, Cava J. Monitoring of anticoagulation during cardiopulmonary bypass in patients treated with aprotinin. In: Pifarre R, ed. Blood Conservation with Aprotinin. Philadelphia: Hanley & Belfus Inc, 1995:239-246.

    Google Scholar 

  65. Young JA, Kisker CT, Doty DB. Adequate anticoagulation during cardiopulmonary bypass determined by activated coagulation time and the appearance of fibrin monomer. Ann Thorac Surg 1978;26:231-240.

    Google Scholar 

  66. Koster A, Despotis G, Gruendel M, et al. The plasma supplemented modified activated clotting time for monitoring of heparinization during cardiopulmonary bypass: A pilot investigation. Anesth Analg 2002;95:26-30.

    Google Scholar 

  67. Kmiecik SA, Liu JL, Vaadia TS, et al. Quantitative evaluation of hypothermia, hyperthermia, and hemodilution on coagulation. J Extra Corpor Technol 2001;33:100-105.

    Google Scholar 

  68. Huyzen RJ, van Ouveren W, Wei F, Stellingwerf P, Boonstra PW, Gu YJ. In vitro effect of hemodilution on activated clotting time and high-dose thrombin time during cardiopulmonary bypass. Ann Thorac Surg 1996;62:533-537.

    Google Scholar 

  69. Rohrer MJ, Natale AM. The effect of hypothermia on the coagulation mechanism. Crit Care Med 1992;20:1402- 1405.

    Google Scholar 

  70. Ansell J, Deykin D. Heparin induced thrombocytopenia and recurrent thromboembolism. Am J Hematol 1980;8:325-332.

    Google Scholar 

  71. Wendel HP, Heller W, Gallimore MJ, Bantel H, Muller-Beissenhirtz H, Hoffmeister HE. The prolonged activated clotting time (ACT) with aprotinin depends on the type of activator used for measurement. Blood Coagul Fibrinol 1993;4:41-45.

    Google Scholar 

  72. Wang JS, Lin CY, Hung WT, Karp RB. Monitoring of heparin-induced anticoagulation with kaolin-activated clotting time in cardiac surgical patients treated with aprotinin. Anesthesiology 1992;77:1080-1084.

    Google Scholar 

  73. Wang JS, Lin CY, Hung WT, Thisted RA, Karp RB. In vitro effect of aprotinin on activated clotting time measured with different activators. JThorac Cardiovasc Surg 1992;104:1135-1140.

    Google Scholar 

  74. Culliford AT, Gitel SN, Starr N, et al. Lack of correlation between activated clotting time and plasma heparin during cardiopulmonary bypass. Ann Surg 1981;193:105-111.

    Google Scholar 

  75. Murray DJ, Brosnahan WJ, Pennell B, Kapalanski D, Weiler JM, Olson J. Heparin detection by the activated coagulation time: A comparison of the sensitivity of coagulation tests and heparin assays. J Cardiothorac Vasc Anesth 1997;11:24-28.

    Google Scholar 

  76. Fitch JCK, Geary KLB, Mirto GP, Byrne DW, Hines RL. Heparin management test versus activated coagulation time during cardiovascular surgery: Correlation with anti-Xa activity. J Cardiothorac Vasc Anesth 1999;13:53-57.

    Google Scholar 

  77. Cloyd GM, D'Ambra MN, Akins CW. Diminished anticoagulant response to heparin in patients undergoing coronary artery bypass grafting. J Thorac Cardiovasc Surg 1987;94:535-538.

    Google Scholar 

  78. Levy JH, Montes F, Szlam F, Hillyer CD. The in vitro effects of antithrombin III on the activated coagulation time in patients on heparin therapy. Anesth Analg 2000;90:1076-1079.

    Google Scholar 

  79. Babka R, Colby C, El-Etr A, Pifarre R. Monitoring of intraoperative heparinization and blood loss following cardiopulmonary bypass surgery. J Thorac Cardiovasc Surg 1977;73:780-782. 140 Linden

    Google Scholar 

  80. Anderson JAM, Saenko EL. Editorial I: Heparin resistance. Br J Anaesth 2002;88:467-469.

    Google Scholar 

  81. Brinks HJ, Weerwind PW, Bogdan S, Verbruggen H, Brouwer MHJ. Does heparin pretreatment affect the haemostatic system during and after cardiopulmonary bypass? Perfusion 2001;16:3-12.

    Google Scholar 

  82. Shore-Lesserson L, Manspeizer HE, Bolastig M, Harrington D, Vela-Cantos F, DePerio M. Anticoagulation for cardiac surgery in patients receiving preoperative heparin: Use of the high-dose thrombin time. Anesth Analg 2000;90:813-818.

    Google Scholar 

  83. Nicholson SC, Keeling DM, Sinclair ME, Evans RD. Heparin pretreatment does not alter heparin requirements during cardiopulmonary bypass. Br J Anaesth 2001;87:844-847.

    Google Scholar 

  84. Linden MD, Schneider M, Baker S, Erber WN. Decreased concentration of antithrombin after pre-operative therapeutic heparin does not caused heparin resistance in cardiopulmonary bypass. J Cardiothorac Vasc Anesth 2004;18.

  85. Conard J, Lecompte T, Horellou MH, Cazenave B, Samama M. Antithrombin III in patients treated with subcutaneous or intravenous heparin. Thromb Res 1981;22:507-511.

    Google Scholar 

  86. McEvoy GK. American Hospital Formulary Service Drug Information 1998: American Society of Health-System Pharmacists, 1998.

  87. Matsuo T, Shanberge J N, Matsuo O. Effect of protamine sulphate on antithrombin III activity. Clin Chim Acta 1983;131:233-238.

    Google Scholar 

  88. Okajima Y, Kanayama S, Maeda Y, et al. Studies on the neutralizing mechanism of antithrombin activity of heparin by protamine. Thromb Res 1981;24:21-29.

    Google Scholar 

  89. Rossmann P, Matousovic K, Horacek V. Protamineheparin aggregates, their fine structure, histochemistry and renal deposition. Virchows Archiv 1982;40:81-98.

    Google Scholar 

  90. Harenberg J, Gnasso A, de Vries JX, Zimmermann R, Augustin J. Inhibition of low molecular weight heparin by protamine chloride in vivo. Thromb Res 1985;38:11-20.

    Google Scholar 

  91. Lane DA, Denton J, Flynn AM, Thunberg L, Lindahl U. Anticoagulant activities of heparin oligosaccharides and their neutralization by platelet factor 4. Biochem J 1984;218:725-732.

    Google Scholar 

  92. Lindblad B, Borgstrom A, Wakefield TW, Whitehouse WM, Stanley JC. Protamine reversal of anticoagulation acheived with a low molecular weight heparin. The effect on eicosanoids, clotting and complement factors. Thromb Res 1987;48:31-40.

    Google Scholar 

  93. Holst J, Lindblad B, Bergqvist D, Hedner U, Nordfang O, Ostergaard P. The effect of protamine sulphate on plasma tissue factor pathway inhibitor released by intravenous and subcutaneous unfractionated and low molecular weight heparin in man. Thromb Res 1997;86:343-348.

    Google Scholar 

  94. LaDuca FM, Zucker ML, Walker CE. Assessing heparin neutralization following cardiac surgery: Sensitivity of thrombin time-based assays versus protamine titration methods. Perfusion 1999;14:181-187.

    Google Scholar 

  95. Shigeta O, Kojima H, Hiramatsu Y, et al. Low-dose protamine based on heparin-protamine titration method reduces platelet dysfunction after cardiopulmonary bypass. J Thorac Cardiovasc Surg 1999;118:354-360.

    Google Scholar 

  96. Train JJA. Comment: Determination of protamine dose. Anaesthesia 1992;47:636-637.

    Google Scholar 

  97. Aren C. Heparin and protamine during cardiac surgery. Perfusion 1989;4:171-181.

    Google Scholar 

  98. Ellison N, Ominsky AJ, Wollman H. Is protamine a clinically important anticoagulant? A negative answer. Anesthesiology 1971;35:621-629.

    Google Scholar 

  99. Shore-Lesserson L, Reich DL, DePerio M. Heparin and protamine titration do not improve haemostasis in cardiac surgical patients. Can J Anaesth 1998;45:10-18.

    Google Scholar 

  100. Chargaff E, Olson KB. Studies on the chemistry of blood coagulation: VI Studies on the action of heparin and other anticoagulants. The influence of protamine on the anticoagulant effect in vivo. J Biol Chem 1938;122:153-167.

    Google Scholar 

  101. DeLucia A, Wakefield TW, Kadell AM, Wrobleski SK, VanDort M, Stanley JC. Tissue distribution, circulating half-life, and excretion of intravenously administered protamine sulfate. American Society of Artificial Internal Organs Journal 1993;39:M715-M718.

    Google Scholar 

  102. Gollub S. Heparin rebound in open heart surgery. Surg Obstet Gynecol 1967;124:337-346.

    Google Scholar 

  103. Hyun BH, Pence RE, Davila JC, Butcher J, Custer RP. Heparin rebound phenomenon in extracorporeal circulation. Surg Obstet Gynecol 1962;115:191-198.

    Google Scholar 

  104. Rent R, Ertel N, Eisenstein R, Gewurz H. Complement activation by interaction of polycanions and polycations: Heparin-protamine induced consumption of complement. J Immunol 1975;114:120-124.

    Google Scholar 

  105. Kirklin JK, Chenoweth DE, Naftel DC, et al. Effects of protamine administration after cardiopulmonary bypass on complement, blood elements, and the hemodynamic state. Ann Thorac Surg 1986;41:193-199.

    Google Scholar 

  106. Lindblad B. Protamine sulphate: A review of its effects: Hypersensitivity and toxicity. Eur J Vasc Surg 1989;3:195-201.

    Google Scholar 

  107. Fabian I, Aronson M. Polycations as possible substitutes for protamine in heparin neutralization. Thromb Res 1980;17:239-247.

    Google Scholar 

  108. Cumming AM, Jones GR, Wensley RT, Cundall RB. In vitro neutralization of heparin in plasma prior to the activated partial thromboplastin time test: An assessment of four heparin antagonists and two anion exchange resins. Thromb Res 1986;41:43-56.

    Google Scholar 

  109. Cardigan RA, Mackie IJ, Machin SJ. The effect of heparin and its neutralisation on functional assays for factor VIIa, factor VII and TFPI. Thromb Res 1996;84:237-242.

    Google Scholar 

  110. Cobel-Geard RJ, Hassouna HI. Interaction of protamine sulfate with thrombin. Am J Hematol 1983;14:227-233.

    Google Scholar 

  111. Adkins JR, Hardy JD. Sodium heparin neutralization and the anticoagulant effects of protamine sulphate. Arch Surg 1967;94:175-177.

    Google Scholar 

  112. Ollendorf P. The nature of the anticoagulant effect of heparin, protamine, Polybrene, and toluidine blue. Scand J Clin Lab Invest 1962;14:267.

    Google Scholar 

  113. Bick RL. Physiology and pathophysiology of hemostasis during cardiac surgery. In: Pifarre R, ed. Blood Conservation with Aprotinin. Philadelphia: Hanley & Belfus Inc., 1995:1-44.

    Google Scholar 

  114. Kozek-Langenecker SA, Mohammad SF, Masaki T, Kamerath C, Cheung AK. The effects of heparin, protamine, and heparinase 1 on platelets in vitro using whole blood flow cytometry. Anesth Analg 2000;90:808-812.

    Google Scholar 

  115. Miyashita T, Nakajima T, Hayashi Y, Kuro M. Hemostatic effects of low-dose protamine following cardiopulmonary bypass. Am J Hematol 2000;64:112-115.

    Google Scholar 

  116. Keeler JF, Shah MV, Hansbro SD. Protamine–the need to determine the dose. Comparison of a simple protamine titration method with an empirical dose regimen for reversal of heparinisation following cardiopulmonary bypass. Anaesthesia 1991;46:925-928.

    Google Scholar 

  117. Stewart GJ, Niewiarowski S. Nonenzymatic polymerization of fibrinogen by protamine sulphate. Biochemica et Biocphysica Acta 1969;194:462-469.

    Google Scholar 

  118. Godal HC, Gjengedal G. Activation of coagulation by heparin-protamine complexes as demonstrated by throbotest. Scand J Haemostas 1971;8:194-199.

    Google Scholar 

  119. Rothnie NG, J.B. K. Bleeding after perfusion for open heart surgery; importance of un-neutralized heparin and its proper correction. Br Med J 1960;1:73.

    Google Scholar 

  120. Gundry SR, Drongowski RA, Klein MD, Coran AG. Postoperative bleeding in cardiovascular surgery: Does heparin rebound really exist? Am Surg 1989;55:162-165.

    Google Scholar 

  121. Cate WR, Sadle RN, Seitzman DM. Heparin rebound: A clinical and experimental study. Am Surg 1954;20:813.

    Google Scholar 

  122. Ellison N, Beatty CP, Blake DR, Wurzel HA, MacVaugh H. Heparin rebound: Studies in patients and volunteers. J Thorac Cardiovasc Surg 1974;67:723-729.

    Google Scholar 

  123. Woodman RC, Harker LA. Bleeding complications associated with cardiopulmonary bypass. Blood 1990;76:1680- 1697.

    Google Scholar 

  124. Pifarre R, Babka R, Sullivan HJ, Montoya A, Bakhos M, El-Etr A. Management of postoperative heparin rebound following cardiopulmonary bypass. J Thorac Cardiovasc Surg 1981;81:378-381.

    Google Scholar 

  125. Pardanani DS, Roy G, Sen PK. Heparin rebound: A clinical study in cases of open heart surgery under cardiopulmonary bypass. J Prostgrad Med 1970;16:26-31.

    Google Scholar 

  126. Jobes DR, Schwartz AJ, Ellison N. Heparin rebound. J Thorac Cardiovasc Surg 1981;82:940-941.

    Google Scholar 

  127. Dodrill FD, Marshall N, Nyboer J, Hughes CH, Derbyshire AS, Stearns AB. The use of the heart-lung apparatus in human cardiac surgery. J Thorac Surg 1957;33:60.

    Google Scholar 

  128. Schriener R. Discussion of our experience in regional heparinization. ASAIO Trans 1958;4:36.

    Google Scholar 

  129. Perkins HA, Acra DJ, Rolfs MR. Estimation of heparin levels in stored and traumatized blood. Blood 1961;18:807.

    Google Scholar 

  130. Wright JS, Osborne JJ, Perkins HA. Heparin level during and after hypothermic perfusion. J Cardiovasc Surg 1964;5:244-248.

    Google Scholar 

  131. Peden JC, McFarland JA. Use of the plasma thrombin time to assess the adequacy of in vivo neutralization of heparin; comparative studies following operations employing extracorporeal circulation. Blood 1959;14: 1230.

    Google Scholar 

  132. Thies HA. Behavior of the antithrombin time after extracorporeal circulation of blood. Throm Diath Haemorrh 1960;4:400-409.

    Google Scholar 

  133. Jacques LB, Ricken AG. The relationship between heparin dosage and clotting time. Blood 1948;3:197-211.

    Google Scholar 

  134. Whitfield MS, Levy G. Relationship between concentration and anticoagulant effect of heparin in plasma of normal subjects: Magnitude and predictability of individual differrences. Clin Pharmacol Ther 1980;28:509-516.

    Google Scholar 

  135. Anderson MN, Mendelow M, Alpano GA. Experimental studies dealing with heparin-protamine activity with especial reference to protamine inhibition of clotting. Surgery 1959;46:1060.

    Google Scholar 

  136. Yang VC. A simple method for rapid and precise estimation of the protamine dose required for clinical heparin reversal. ASAIO Transactions 1989;35:274-277.

    Google Scholar 

  137. Yang VC, Fu YY, Teng CL, Ma SC, Shanberge JN. A method for the quantitation of protamine in plasma. Thromb Res 1994;74:427-434.

    Google Scholar 

  138. Moor E, Hamsten A, Blomback M, Herzfeld I, Wiman B, Ryden L. Haemostatic factors and inhibitors and coronary artery bypass grafting: Preoperative alterations and relations to graft occlusion. Thromb Haemostas 1994;72:335-342.

    Google Scholar 

  139. Varela MLI, Adamczuk YP, Martinuzzo ME, et al. Early occlusion of coronary by-pass associated with the presence of factor V Leiden and the prothrombin 20210A allele: Case report. Blood Coagul Fibrinol 1999;10:443-446.

    Google Scholar 

  140. Eritsland J, Gjonnes G, Sandset PM, Seljeflot I, Arnesen H. Activated protein C resistance and graft occlusion after coronary artery bypass surgery. Thromb Res 1995;79:223-226.

    Google Scholar 

  141. van der Meer J, Hillege HL, Ascoop CA, et al. Aprotinin in aortocoronary bypass surgery: Increased risk of veingraft occlusion and myocardial infarction? Supportive evidence from a retrospective study. Thromb Haemostas 1996;75:1-3.

    Google Scholar 

  142. Hayashida N, Isomura T, Sato T, Maruyama H, Kosuga K, Aoyagi S. Effects of minimal-dose aprotinin on coronary artery bypass grafting. J Thorac Cardiovasc Surg 1997;114:261-269.

    Google Scholar 

  143. Lynn GM, Stefanko K, Reed JF, Gee W, Nicholas G. Risk factors for stroke after coronary artery bypass. J Thorac Cardiovasc Surg 1992;104:1518-1523.

    Google Scholar 

  144. Frye RL, Kronmal R, Schaff HV, Myers WO, Gersh BJ. Stroke in coronary artery bypass graft surgery: An analysis of the CASS experience. The participants in the Coronary Artery Surgery Study. Int J Cardiol 1992;36:213-221.

    Google Scholar 

  145. Royston D. Controversies in the practical use of aprotinin.In: Pifarre R, ed. Anticoagulation, Hemostasis, and Blood Preservation in Cardiovascular Surgery. Philadelphia: Hanley & Belfus, 1993.

    Google Scholar 

  146. Schaff HV, Gersh BJ, Fisher LD, et al. Detrimental effect of perioperative myocardial infarction on late survival after coronary artery bypass. Report from the coronary arteru surgery study–CASS. J Thorac Cardiovasc Surg 1984;88:972-981.

    Google Scholar 

  147. Roberts AJ. Perioperative myocardial infarction and changes in left ventricular performance related to coronary artery bypass graft surgery. Ann Thorac Surg 1983;35:208-225.

    Google Scholar 

  148. Conahan TJ. Complications of cardiac surgery. In: Kaplan JA, ed. Cardiac Anesthesia. Vol. 2. New York: Grune & Stratton Inc., 1987:1105-1122.

    Google Scholar 

  149. Concha M, Munoz I. Experience with low-dose aprotinin.In: Pifarre R, ed. Blood Conservation with Aprotinin. Philadelphia: Hanley & Belfus Inc, 1995:293-312.

    Google Scholar 

  150. Love TR, Hendren WG, O'Keefe DD, Daggett WM. Transfusion of predonated autologous blood in elective cardiac surgery. Ann Thorac Surg 1987;43:508-512.

    Google Scholar 

  151. Gluck D, Kubanek B, Ahnefeld FW. Autologous transfusion. Goals and benefits, limitations and risks demonstrated in a practical concept. Anaesthesist 1988;37:565-571.

    Google Scholar 

  152. Anderson BV, Tomasulo PA. Current autologous transfusion practices. Implications for the future. Transfusion 1988;28:394-396.

    Google Scholar 

  153. Hughes PD. Patients need greater access to autologous blood. Med J Aust 2001;174:308.

    Google Scholar 

  154. Thomas MJG. Royal College of Physicians of Edinburgh consensus concerence on autologous transfusion: Introduction. Transfus Med 1999;9:239.

    Google Scholar 

  155. Thomas MJG, Desmond MJ, Gillon J. Preoperative autologous donation: What was the impact of the 1995 consensus statement? Transfus Med 1999;9:241-257.

    Google Scholar 

  156. The Australian Society for Blood Transfusion. Guidelines for autologous blood collection. Topics Transfus Med 2002;9:5-43.

    Google Scholar 

  157. Forgie MA, Wells PS, Laupacis A, Fergusson D. Preoperative autologous donation decreases allogeneic transfusion but increases exposure to all red blood cell transfusion. Arch Intern Med 1998;158:610-616.

    Google Scholar 

  158. Hohn L, Schweizer A, Licker M, Morel DR. Absence of beneficial effect of acute normovolemic hemodilution combined with aprotinin on allogeneic blood transfusion requirements in cardiac surgery. Anesthesiology 2002;96:276-282.

    Google Scholar 

  159. Balachandran S, Cross MH, Karthikeyan S, Mulpur A, Hansbro SD, Hobson P. Retrograde autologous priming of the cardiopulmonary bypass circuit reduced blood transfusion after coronary artery surgery. Ann Thorac Surg 2002;73:1912-1918.

    Google Scholar 

  160. Cross MH. Autotransfusion in cardiac surgery. Perfusion 2001;16:391-400.

    Google Scholar 

  161. Whyte GS, Savoia HF. The risk of transmitting HCV, HBV or HIV by blood transfusion in Victoria. Med J Aust 1997;166:584-586.

    Google Scholar 

  162. Hebert PC, Wells GA, Blajchman MA, et al. A multicentre, randomized, controlled clinical trial of transfusion requirements in critical care. N Engl J Med 1999;340:409-417.

    Google Scholar 

  163. Hebert PC, Schweitzer I, Calder L, Blajchman MA, Giulivi A. Review of the clinical practice literature on allogeneic red blood cell transfusion. Can Med Assoc J 1997;156:S9-S27.

    Google Scholar 

  164. Zilla P, Fasol R, Groscurth P, Klepethkow A, Reichenspurner H, Wolner E. Blood platelets in cardiopulmonary bypass operations. J Thorac Cardiovasc Surg 1989;97:379-388.

    Google Scholar 

  165. Edmunds LH, Addonizio VP. Extracorporeal circulation.In: Colman RW, Hirsh J, Marder VJ, Salzman EW, eds. Hemostasis and Thrombosis: Basic Principles and Clinical Practice. Philadelphia: Lippincott, Williams & Wilkins, 1987:901-912.

    Google Scholar 

  166. Michelson AD. The hemostatic defect of cardiopulmonary bypass. In: Jones R, Elliott M, eds. Cardiopulmonary Bypass in Neonates, Infants and Young Children. Oxford: Butterworth-Heinemann, 1994.

    Google Scholar 

  167. Shattil SJ, Hoxie JA, Cunningham M. Changes in platelet membrane glycoprotein IIb.IIIa complex during platelet activation. J Biol Chem 1985;260:11107-11114.

    Google Scholar 

  168. Musial J, Niewiarowski S, Hershock D, Morinelli TA, Colman RW, Edmunds LH. Loss of fibrinogen receptors from the platelet surface during simulated extracorporeal circulation. J Lab Clin Med 1985;105:514-522.

    Google Scholar 

  169. George JN. Direct assessment of platelet adhesion to glass: A study of the forces of interaction and the effects of plasma and serum factors, platelet function and modi-fication of the glass surface. Blood 1982;40:862-874.

    Google Scholar 

  170. Salzman EW, Linden J, Brier D, Merrill EW. Surfaceinduced platelet adhesion, aggregation and release. Ann N Y Acad Sci 1977;283:114-127.

    Google Scholar 

  171. Addonizio VP, Colman RW, Edmunds LH. The effect of blood flow and surface area on platelets during extracorporeal circulation. Transcripts of the American Society of Artificial Organs 1978;24:650-655.

    Google Scholar 

  172. Valeri CR, Khabbaz K, Khuri SF, et al. Effect of skin temperature on platelet function in platelets undergoing extracorporeal bypass. J Thorac Cardiovasc Surg 1992;104:108-116.

    Google Scholar 

  173. Khuri SF, Wolfe JA, Josa M, et al. Hematologic changes during and after cardiopulmonary bypass and their relationship to the bleeding time and non-surgical blood loss. J Thorac Cardiovasc Surg 1992;104:94-107.

    Google Scholar 

  174. Wachtogel YT, Musial J, Jenkin B, Niewiarowski S, Edmunds LH, Colman RW. Loss of platelet alpha-2-adrenergic receptors during simulated extracorporeal circulation: Prevention with prostaglandin E1. J Lab Clin Med 1985;105:601-607.

    Google Scholar 

  175. Kestin A, Valeri CR, Khuri SF, et al. The platelet function defect of cardiopulmonary bypass. Blood 1993;82:107-117.

    Google Scholar 

  176. Wenger RK, Lukasiewicz H, Mikuta BS, Niewiarowski S, Edmunds LH. Loss of platelet fibrinogen receptors during clinical cardiopulmonary bypass. JThorac Cardiovasc Surg 1989;97:235-239.

    Google Scholar 

  177. George JN, Pickett EB, Saucerman S, et al. Platelet surface glycoproteins: Studies on resting and activated platelets and platelet membrane microparticles in normal subjects, and observations in patients during adult repiratory distress syndrome and cardiac surgery. Journal of Clinical Investigation 1986;78:340-348.

    Google Scholar 

  178. Bick RL. Hemostasis defects associated with cardiac surgery, prosthetic devices and other extracorporeal circuits. Semin Thromb Hemostas 1985;11:249-280.

    Google Scholar 

  179. Kowalski E, Kopec M, Wegrzynowicz Z. Influence of fibrinogen degradation products (FDP) on platelet aggregation, adhesiveness, and viscous metamorphosis. Throm Diath Haemorrh 1963;10:406-413.

    Google Scholar 

  180. Bick RL, Schmalhorst SW, Arbegast NR. Alterations of hemostasis associated with cardiopulmonary bypass. Thromb Res 1976;8:285-302.

    Google Scholar 

  181. Chuang HYK, Sharma NC, Mohammed SF, Mason RG. Adsorption of thrombin onto artificial surfaces and its detection by an immunoradiometric assay. Artif Organs 1979;3:226-231.

    Google Scholar 

  182. Mammen EF, Koets MH, Washington BC, et al. Hemostasis changes during cardiopulmonary bypass surgery. Semin Thromb Hemostas 1985;11:281-292.

    Google Scholar 

  183. Berndt MC, Chong BH, Andrews RK. Biochemistry of drug-dependent platelet autoantigens. In: Kunicki TJ, George JN, eds. Platelet Immunobiology. Philadelphia: Lippincott, Williams & Wilkins, 1989:132-147.

    Google Scholar 

  184. Ellison N, Edmunds LH, Colman RW. Platelet aggregation following heparin and protamine administration. Anesthesiology 1978;48:65-68.

    Google Scholar 

  185. Edmunds LH. Cardiopulmonary bypass and blood. In: Pifarre R, ed. Blood Conservation with Aprotinin. Philadelphia: Hanley & Belfus, 1995:45-66.

    Google Scholar 

  186. Michelson AD. Pathomechanism of defective hemostasis during and after extracorporeal circulation: The role of Hemostasis and Cardiopulmonary Bypass 143 platelets. In: Friedel N, Hetzer R, Royston D, eds. Blood Use in Cardiac Surgery. Dermstadt: Steinkopff Verlag, 1991:16-26.

    Google Scholar 

  187. Harker LA. Bleeding after cardiopulmonary bypass. N Engl J Med 1986;314:1446-1448.

    Google Scholar 

  188. Linden MD, Gibbs NM, Bremner M, Schneider M, Erber WN. The effect of haemodilution on antithrombin concentration during cardiac surgery. Anaesth Intensive Care 2004;32.

  189. Bremmer M, Gibbs NM, Linden MD, Erber WN, Weightman WM. Antithrombin III levels during cardiac surgery and their relationship to haemoglobin concentration. Anaesth Intensive Care 2002;30:245.

    Google Scholar 

  190. Ng KFJ, Lam CCK, Chan LC. In vivo effect of haemodilution with saline on coagulation: A randomized controlled trial. Br J Anaesth 2002;88:475-480.

    Google Scholar 

  191. Ruttmann TG. Editorial II: Haemodilution enhances coagulation. Br J Anaesth 2002;88:470-472.

    Google Scholar 

  192. Slaughter TF, Mark JB, El-Moalem E, Hayward KA, Hilton AK, Greenberg CS. Hemostatic effects of antithrombin III supplementation during cardiac surgery: Results of a prospective randomized investigation. Blood Coagul Fibrinol 2001;12:25-31.

    Google Scholar 

  193. Jackson MR, Olsen SB, Gomez ER, Alving BM. Use of antithrombin III concentrates to correct antithrombin III deficiency during vascular surgery. J Vasc Surg 1995;22:804-807.

    Google Scholar 

  194. Williams MR, D'Ambra AB, Beck JR, et al. A randomized trial of antithrombin concentrate for treatment of heparin resistance. Ann Thorac Surg 2000;70:873-877.

    Google Scholar 

  195. Uniyal S, Brash JL. Patterns of adsorption of proteins from human plasma onto foreign surfaces. Thromb Haemostas 1982;47:285-290.

    Google Scholar 

  196. Lindon JN, McManama G, Kushner L, Merrill EW, Salzman EW. Does the conformation of adsorbed fibrinogen dictate platelet interactions with artificial surfaces? Blood 1986;68:355-362.

    Google Scholar 

  197. Colman RW. Surface-mediated defense reactions. The plasma contact activation system. Journal of Clinical Investigation 1984;73:1249-1253.

    Google Scholar 

  198. Sundaram S, Courtney JM, Taggart DP, et al. Biocompatibility of cardiopulmonary bypass: Influence on blood compatibility of device type, mode of blood flow and duration of application. Int J Artif Organs 1994;17:118-128.

    Google Scholar 

  199. Bachmann F, McKenna R, Cole ER, Najafi H. The haemostatic mechanism after open-heart surgery. JThorac Cardiovasc Surg 1975;70:76-85.

    Google Scholar 

  200. Kongsgaard UE, Smith-Erichsen N, Geiran O, Bjornskau L. Changes in the coagulation and fibrinolytic systems during and after cardiopulmonary bypass surgery. Thorac Cardiovasc Surg 1989;37:158-162.

    Google Scholar 

  201. Yoshihara H, Yamamoto T, Mihara H. Changes in coagulation and fibrinolysis occuring in dogs during hypothermia. Thromb Res 1985;37:503-512.

    Google Scholar 

  202. Michelson AD, MacGregor H, Kestin A, Barnard MR, Rohrer MJ, Valeri CR. Hypothermia induced reversible inhibition of human platelet activation in vitro and in vivo. Blood 1991;78:389.

    Google Scholar 

  203. Moore FD, Warner KG, Assousa S, Valeri CR, Khuri SF. The effects of complement activation during cardiopulmonary bypass. Attenuation by hypothermia, heparin and hemodilution. Ann Surg 1988;208:95-103.

    Google Scholar 

  204. Bick RL. Alterations of hemostasis associated with cardiopulmonary bypass: Pathophysiology, prevention, diagnosis, and management. Semin Thromb Hemostas 1976;3:59-82.

    Google Scholar 

  205. Holloway DS, Summaria L, Sandesara J, Vagher JP, Alexander JC, Caprini JA. Decrease platelet number and function and increased fibrinolysis contribute to postoperative bleeding in cardiopulmonary bypass patients. Thromb Haemostas 1988;59:62-67.

    Google Scholar 

  206. Stibbe J, Kluft C, Brommer EJ, Gomes M, de Jong DS, Nauta J. Enhanced fibrinolytic activity during cardiopulmonary bypass in open-heart surgery in man is caused by extrinsic (tissue-type) plasminogen activator. Eur J Clin Invest 1984;14:375-382.

    Google Scholar 

  207. Mori F, Nakahara Y, Kurata S, Furukawa S, Esato K, Mohri H. Late changes in hemostatic parameters following open-heart surgery. J Cardiovasc Surg 1982;23:458-462.

    Google Scholar 

  208. Blauhut B, Gross C, Necek S, Doran JE, Spath P, Lunsgaard-Hansen P. Effects of high-dose aprotinin on blood loss, platelet function, fibrinolysis, complement, and renal function after cardiopulmonary bypass. J Thorac Cardiovasc Surg 1991;101:958-967.

    Google Scholar 

  209. Kucuk O, Kwaan HC, Frederickson J, Wade L, Green D. Increased fibrinolytic activity in patients undergoing cardiopulmonary bypass operation. Am J Hematol 1986;23:223-229.

    Google Scholar 

  210. Kambayashi J, Sakon M, Yokota M, Shiba E, Kawasaki T, Mori T. Activation of coagulation and fibrinolysis during surgery, analyzed by molecular markers. Thromb Res 1990;60:157-167.

    Google Scholar 

  211. Gram J, Janetzko T, Jespersen J, Bruhn HD. Enhanced effective fibrinolysis following the neutralization of heparin in open heart surgery increases the risk of post-surgical bleeding. Thromb Haemostas 1990;63:241-245.

    Google Scholar 

  212. Casati V, Gerli C, Franco A, et al. Activation of coagulation and fibrinolysis during coronary surgery: On-pump versus off-pump techniques. Anesthesiology 2001;95:1103-1109.

    Google Scholar 

  213. Gelb AB, Roth RI, Levin J, et al. Changes in blood coagulation during and following cardiopulmonary bypass: Lack of correlation with clinical bleeding. Am J Clin Pathol 1996;106:87-99.

    Google Scholar 

  214. Teufelsbauer H, Proidl S, Havel M, Vukovich T. Early activation of hemostasis during cardiopulmonary bypass: Evidence for thrombin mediated hyperfibrinolysis. Thromb Haemostas 1992;68:250-252.

    Google Scholar 

  215. Burman JF, Chung HI, Lane DA, Philippou H, Adami A, Lincoln JC. Role of factor XII in thrombin generation and fibrinolysis during cardiopulmonary bypass. Lancet 1994;344:1192-1193.

    Google Scholar 

  216. Davis R, Whittington R. Aprotinin. A review of its pharmacology and therapeutic efficacy in reducing blood loss associated with cardiac surgery. Drugs 1995;49:954-983.

    Google Scholar 

  217. Bidstrup BP, Royston D, Sapsford RN. Reduction in blood loss and blood use after cardiopulmonary bypass with high dose aprotinin (Trasylol). J Thorac Cardiovasc Surg 1989;97:364-372.

    Google Scholar 

  218. Royston D, Bidstrup BP, Taylor KM, Sapsford RN. Effect of aprotinin on the need for blood transfusion after repeat open heart surgery. Lancet 1987;2:1289-1291.

    Google Scholar 

  219. Royston D. High-dose aprotinin therapy: A review of the first five years' experience. J Cardiothorac Vasc Anesth 1992;6:76-100.

    Google Scholar 

  220. Fritz R, Wunderer G. Biochemistry and applications of aprotinin, the kallikrein inhibitor from bovine organs. Arzneimittel-Forschung 1983;33:479-494.

    Google Scholar 

  221. Westaby S. Aprotinin in perspective. Ann Thorac Surg 1993;55:1033-1041.

    Google Scholar 

  222. Aoki N, Naito K, Yoshida N. Inhibition of platelet aggregation by protease inhibitors: Possible involvement of proteases in platelet aggregation. Blood 1978;52:1-12.

    Google Scholar 

  223. Poullis M, Landis RC, Taylor KM. Aprotinin: Is it prothrombotic? Perfusion 2001;16:401-409.

    Google Scholar 

  224. Landis RC, Asimakopoulos G, Poullis M, et al. Effect of aprotinin (Trasylol) on the inflammatory and thrombotic complications of conventional cardiopulmonary bypass surgery. Heart Surg Forum 2001;4:535-539.

    Google Scholar 

  225. Landis RC, Haskard DO, Taylor KM. New antiinflammatory and platelet-preserving effects of aprotinin. Ann Thorac Surg 2001;72:S1808-1813.

    Google Scholar 

  226. Inui K, Shimazaki Y, Watanabe T, et al. Aprotinin reduces the expression of p-selectin on the surface of platelet and leukocyte-platelet conjugations. Artif Organs 1998;22:1018-1022.

    Google Scholar 

  227. Hyde JA, Chinn JA, Graham TR. Platelets and cardiopulmonary bypass. Perfusion 1998;13:389-407.

    Google Scholar 

  228. Shigeta O, Kojima H, Jikuya T, et al. Aprotinin inhibits plasmin-induced platelet activation during cardiopulmonary bypass. Circulation 1997;96:569-574.

    Google Scholar 

  229. Wahba A, Black G, Koksch M, et al. Aprotinin has no effect on platelet activation and adhesion during cardiopulmonary bypass. Thromb Haemostas 1996;75:844-848.

    Google Scholar 

  230. Primack C, Walenga JM, Koza MJ, Shankey TV, Pifarre R. Aprotinin modulation of platelet activation in patients undergoing cardiopulmonary bypass operations. Ann Thorac Surg 1996;61:1188-1193.

    Google Scholar 

  231. Kozek-Langenecker SA, Mohammad SF, Masaki T, Green W, Kamerath C, Cheung AK. The effects of aprotonin on platelets in vitro using whole blood flow cytometry. Anesth Analg 2000;90:12-16.

    Google Scholar 

  232. Smith PK, Muhlbaier LH. Aprotinin: Safe and effective only with the full-dose regimen. Ann Thorac Surg 1996;62:1575-1577.

    Google Scholar 

  233. Cosgrove DM, Heric B, Lytle DW, et al. Aprotinin therapy for reoperative myocardial revascularization: A placebo controlled study. Ann Thorac Surg 1992;54:1031-1038.

    Google Scholar 

  234. Lemmer JH, Stanford W, Bonney SL, et al. Aprotinin for coronary bypass operations: Efficacy, safety, and influence on early saphenous vein graft patency: A multicentre, randomized, double-blinded, placebo controlled study. J Thorac Cardiovasc Surg 1994;107:543-553.

    Google Scholar 

  235. Royston D. The serine protease aprotinin (Trasylol): A novel approach to reducing postoperative bleeding. Blood Coagul Fibrinol 1990;1:55-69.

    Google Scholar 

  236. Wildevuur CR, Eijsman L, Hemker HC. Aprotinin and haemostasis in cardiopulmonary bypass. In: Pifarre R, ed. Blood Conservation with Aprotinin. Philadelphia: Hanley & Belfus Inc, 1995.

    Google Scholar 

  237. Baele PL, Ruiz-Gomez J, Londot C, Sauvage M, van Dyck MJ, Robert A. Systematic use of aprotinin in cardiac surgery: Influence on total homologous exposure and hospital cost. Acta Anaesthesiol Belg 1992;43:103-112.

    Google Scholar 

  238. Dietrich W, Spannagl M, Jochum M, et al. Influence of high-dose aprotinin treatment on blood loss and coagulation patterns in patients undergoing myocardial revascularization. Anesthesiology 1990;73:1119-1126.

    Google Scholar 

  239. Harder MP, Eijsman L, Roozendaal KJ, van Oeveren W, Wildevuur CR. Aprotinin reduces intraoperative and postoperative blood loss on membrane oxygenator cardiopulmonary bypass. Ann Thorac Surg 1991;51:936-941.

    Google Scholar 

  240. Swart MJ, Gordon PC, Hayse-Gregson PB, et al. Highdose aprotinin in cardiac surgery–a prospective, randomized study. Anaesth Intensive Care 1994;22:529-533.

    Google Scholar 

  241. Emerson TE. Pharmacology of aprotinin and efficacy during cardiopulmonary bypass. Cardiovasc Drug Rev 1989;7:127-140.

    Google Scholar 

  242. Okamoto S, Hijikata-Okunomiya A, Wanaka K, Okada Y, Okamoto U. Enzyme-controlling medicines: Introduction. Semin Thromb Hemostas 1997;23:493-501.

    Google Scholar 

  243. Brockway WJ, Castellino FJ. The mechanism of the inhibition of plasmin by epsilon-aminocaproic acid. J Biol Chem 1971;14:4641-4642.

    Google Scholar 

  244. McClure PD, Izsak J. The use of epsilon-aminocaproic acid to reduce bleeding during cardiac bypass in children with congenital heart disease. Anesthesiology 1974;40:604-611.

    Google Scholar 

  245. Vander Salm TJ, Ansell JE, Okike ON, et al. The role of epsilon-aminocoproic acid in reducing bleeding after cardiac operation: A double-blinded randomized study. J Thorac Cardiovasc Surg 1988;95:538-540.

    Google Scholar 

  246. Kaller H, Patzchke K, Wegner LA, Horster FA. Pharmacokinetic observations following intravenous administration of radioactive labelled aprotinin in volunteers. Eur J Drug Metab Pharmacokinet 1978;3:79-85.

    Google Scholar 

  247. Verstraete M. Clinical application of inhibitors of fibrinolysis. Drugs 1985;29:236-261.

    Google Scholar 

  248. Espana F, Estelles A, Griffin JH, Aznar J, Gilabert J. Aprotinin (trasylol) is a competitive inhibitor of activated protein C. Thromb Res 1989;56:751-756.

    Google Scholar 

  249. Taby O, Chabbat J, Steinbuch M. Inhibition of activated protein C by aprotinin and the use of the insolubilized inhibitor for its purification. Thromb Res 1990;59:27-35.

    Google Scholar 

  250. Sweeney JD, Blair AJ, Dupuis MP, King TC, Moulton AL. Aprotinin, cardiac surgery, and factor V Leiden. Transfusion 1997;37:1173-1178.

    Google Scholar 

  251. Schmaier AH. Aprotinin: Can its benefits be offset by harmful effects? Transfusion 1997;37:1105-1107.

    Google Scholar 

  252. Umbrain V, Christiaens F, Camu F. Intraoperative coronary thrombosis: Can aprotinin and protamine be incriminated? J Cardiothorac Vasc Anesth 1994;8:198-201.

    Google Scholar 

  253. Alston TA. Procoagulant action of aprotinin. Anesth Analg 1996;82:1305-1306.

    Google Scholar 

  254. Weightman WM, Gibbs NM. Pharmacological strategies for blood loss. Lancet 2001;357:1131-1132.

    Google Scholar 

  255. Jegaden O, Vedrinne C, Rossi R. Aprotinin does not compromise arterial graft patency in coronary bypass operations. J Thorac Cardiovasc Surg 1993;106:180-181.

    Google Scholar 

  256. Royston D. Intraoperative coronary thrombosis: Can aprotinin be incriminated? J Cardiothorac Vasc Anesth 1994;8:137-141.

    Google Scholar 

  257. De Hert SG, Farooqi NU, Delrue GL, Broecke PW, Vermeyen KM, Adriaensen HF. Dose dependent effect of aprotinin on rate of clot formation. Eur J Anaesth 1996;13:463-467.

    Google Scholar 

  258. Reitsma PH. Genetic principles, underlying disorders of procoagulant and anticoagulant proteins. In: Colman RW, Hirsh J, Marder VJ, Clowes AW, George JN, eds. Hemostasis and Thrombosis: Basic Principles & Clinical Practice. Philadelphia: Lippincott, Williams & Wilkins, 2001:59-87.

    Google Scholar 

  259. Koster T, Rosendaal FR, de Ronde H, Briet E, Vandenbroucke JP, Bertina RM. Venous thrombosis due to poor anticoagulant response to activated protein C: Leiden Thrombophilia Study [see comments]. Lancet 1993;342:1503-1506.

    Google Scholar 

  260. Bertina RM, Koeleman BP, Koster T, et al. Mutation in blood coagulation factor V associated with resistance to activated protein C [see comments]. Nature 1994;369:64-67.

    Google Scholar 

  261. Akhtar MS, Blair AJ, King TC, Sweeney JD. Whole blood screening test for factor V Leiden using a Russell viper venom time-based assay. AmJ Clin Pathol 1998;109:387-391.

    Google Scholar 

  262. Quehenberger P, Handler S, Mannhalter C, Kyrle PA, Speiser W. The factor V (Leiden) test: Evaluation of an assay based on dilute russell viper venom time for the detection of the factor V Leiden mutation. Thromb Res 1999;96:125-133.

    Google Scholar 

  263. Schneider M, Linden MD, Valentine S, Williams K, Erber WN. The effect of aprotinin on normal and factor V Leiden blood. Anaesth Intensive Care 2001;29:74-77.

    Google Scholar 

  264. Linden MD, Schneider M, Erber WN. Factor V Leiden and cardiopulmonary bypass: Investigation of haemostatic parameters and the effect of aprotinin using an ex vivo model. Perfusion 2001;16:476-484.

    Google Scholar 

  265. Despotis GJ, Alsoufiev A, Goodnough LT, Lappas DG. Aprotinin prolongs whole blood activated partial thromboplastin time but not whole blood prothrombin time in patients undergoing cardiac surgery. Anesth Analg 1995;81:919-924.

    Google Scholar 

  266. Robbins P, Forrest M, Fanning S, Royston D. Use of aprotinin therapy in a patient with factor V Leiden. Anesth Analg 1997;84:694-698.

    Google Scholar 

  267. Gillon J, Thomas MJG, Desmond MJ. Acute normovolaemic haemodilution. Transfusion 1996;36:640-643.

    Google Scholar 

  268. Roberts WA, Kirkley SA, Newby MMT. A cost comparison of allogeneic and preoperatively donated autologous blood. Anesth Analg 1996;83:129-133.

    Google Scholar 

  269. Rosenblatt MA, Cantos EM, Mohandas K. Intraoperative hemodilution is more cost effective than preoperative autologous donation for patients undergoing procedures associated with a low risk for transfusion. J Clin Anesth 1997;9:26-29.

    Google Scholar 

  270. Khan RMA, Siddiqui AMA, Natrajan KM. Blood conservation and auto-transfusion in cardiac surgery. J Cardiovasc Surg 1993;8:25-31.

    Google Scholar 

  271. The Blood and Blood Products Committee. Review of the alternatives to homologous blood donation. Canberra: Australian Health Minister's Advisory Council, 2000.

  272. Gillon J, Desmond MJ, Thomas MJG. Acute normovolaemic haemodilution. Transfus Med 1999;9:259-264.

    Google Scholar 

  273. Stehling L, Zauder HL. Acute normovolemic hemodilution. Transfusion 1991;31:857-868.

    Google Scholar 

  274. Ness PM, Bourke DL, Walsh PC. A randomized trial of peri-operative hemodilution versus transfusion of preoperatively deposited autologous blood in elective surgery. Transfusion 1992;32:226-230.

    Google Scholar 

  275. Shah DM, Prichard MN, Newell JC, Karmody AM, Scovill WA, Powers SR. Increased cardiac output and oxygen transport after intraoperative isovolemic hemodilution. Arch Surg 1980;115:597-600.

    Google Scholar 

  276. Welch M, Knight DG, Carr HMH, Smyth JV, Walker MG. The preservation of renal function by isovolemic hemodilution during aortic operations. JVasc Surg 1993;18:858-866.

    Google Scholar 

  277. Mohr R, Martinowitz U, Lavee J, Amroch D, Ramot B, Goor DA. The hemostatic effect of transfusing fresh whole blood versus platelet concentrates after cardiac operations. J Thorac Cardiovasc Surg 1988;96:530-534.

    Google Scholar 

  278. Seghatchian J, Krailadsiri P. Platelet storage lesion and apoptosis: Are they related? Transfus Apheresis Sci 2001;24:103-105.

    Google Scholar 

  279. Shapira S, Friedman Z, Shapiro H, Presseizen K, Radnay J, Ellis MH. The effect of storage on the expression of platelet membrane phosphatidylserine and the subsequent impact on the coagulant function of stored platelets. Transfusion 2000;40:1257-1263.

    Google Scholar 

  280. Seghatchian J, Krailadsiri P. The platelet storage lesion. Transfus Med Rev 1998;11:130-144.

    Google Scholar 

  281. Kitchen AD, Mann GF, Harrison JF, Zuckerman AJ. Effect of gamma irradiation on the human immunodefi-ciency virus and human coagulation proteins. Vox Sang 1989;56:223-229.

    Google Scholar 

  282. Manno CS, Hedberg KW, Kim HC, et al. Comparison of the hemostatic effects of fresh whole blood, stored whole blood, and components after open heart surgery in children. Blood 1991;77:930-936.

    Google Scholar 

  283. Miliam JD, Austin SF, Nihill MR, Keats AS, Cooley DA. Use of sufficient hemodilution to prevent coagulopathies following surgical correction of cyanotic heart disease. J Thorac Cardiovasc Surg 1985;89:623-629.

    Google Scholar 

  284. Bryson GL, Laupacis A, Wells GA. Does acute normovolaemic hemodilution reduce perioperative allogeneic transfusion? A meta-analysis. Anesth Analg 1998;86:9-15.

    Google Scholar 

  285. Vedrinne C, Girard C, Jegaden O, et al. Reduction in blood loss and blood use after cardiopulmonary bypass with high-dose aprotinin versus fresh whole blood transfusion. J Cardiothorac Vasc Anesth 1992;6:319-323.

    Google Scholar 

  286. Ferraris VA, Berry WR, Klingman RR. Comparison of blood reinfusion techniques used during coronary artery bypass grafting. Ann Thorac Surg 1993;56:433-439.

    Google Scholar 

  287. Niinikoski J, Laato M, Laaksonen V, et al. Effects of extreme hemodilution on the immediate post-operative course of coronary artery bypass patients. Eur Surg Res 1983;15:1-10.

    Google Scholar 

  288. Wasser MNJM, Houbiers J GA, d'Amaro J, et al. The effect of fresh versus stored blood on post-operative bleeding after coronary bypass surgery: A prospective randomized study. Br J Haematol 1989;72:81-84.

    Google Scholar 

  289. McGrath KM. Transfusion practices must be evidencebased. Med J Aust 2001;174:309.

    Google Scholar 

  290. Beal RW. Safety first: Reducing exposure to allogeneic blood. Med J Aust 2000;172:359-360.

    Google Scholar 

  291. Henry DA, Henderson KM, Fryer JL, Treloar CJ, Mc-Grath KM, Deveridge SF. Use of interventions to minimise perioperative allogeneic blood transfusion in Australia: A survey by the International Study of Perioperative Transfusion (ISPOT) study group. Med J Aust 2000;172:365-369.

    Google Scholar 

  292. Christopherson R, Frank S, Norris E. Low postoperative hematocrit is associated with cardiac ischaemia in highrisk patients. Anesthesiology 1991;75:A99.

    Google Scholar 

  293. Napier JAF, Bruce M, Chapman JF, et al. Guidelines for autologous transfusion. II. Perioperative haemodilution 146 Linden and cell salvage. Br J Anaesth 1997;78:768-771.

    Google Scholar 

  294. Kelsey P, Murphey MF, Atterbury CLJ, et al. Guidelines: The administrations of blood components and the management of transfused patients. Transfus Med 1999;9:227-238.

    Google Scholar 

  295. Gott VL, Daggett RL. Serendipity and the development of heparin and carbon surfaces. Ann Thorac Surg 1999;68:S19-S22.

    Google Scholar 

  296. Hsu LC. Heparin-coated cardiopulmonary bypass circuits: Current status. Perfusion 2001;16:417-428.

    Google Scholar 

  297. Hsu L. Biocompatibility in cardiopulmonary bypass. J Cardiothorac Vasc Anesth 1997;11:376-382.

    Google Scholar 

  298. Hsu L. Biocompatibility in heparin-coated extracorporeal circuits. Perfusion 1996;11:256-263.

    Google Scholar 

  299. Tayama E, Hayashida N, Akasu K, et al. Biocompatability of heparin-coated extracorporeal bypass circuits: New heparin bonded bioline system. Artif Organs 2000;24:618-623.

    Google Scholar 

  300. Larm O, Larsson R, Olsson P. A new non-thrombogenic surface prepared by selective covalent binding of heparin via a modified reducing terminal residue. Biomater Med Dev Artif Org 1983;11:161-173.

    Google Scholar 

  301. Sanchez J, Elgue G, Riesenfeld J. Studies of adsorption, activation, and inhibition of factor XII on immobilized heparin. Thromb Res 1998;89:41-d50.

    Google Scholar 

  302. te Velthuis H, Baufreton C, Jansen PJM, et al. Heparin coating of extracorporeal circuits inhibits contact activation during cardiac operations. JThorac Cardiovasc Surg 1997;114:117-122.

    Google Scholar 

  303. Kazatchkine MD, Fearon DT, Metcalfe T, Rosenberg RD, Austen KF. Structural determinants of the capacity of heparin to inhibit the formation of the human amplification C3 convertase. J Clin Invest 1981;67:223-228.

    Google Scholar 

  304. Wuillemin WA, te Velthuis H, Lubbers YTP, de Ruig CP, Eldering E, Hack CE. Potentiation of C1 inhibitor by glycosaminoglycans. J Immunol 1997;159:1953- 1960.

    Google Scholar 

  305. Videm V, Nilsson L, Venge P, Svennevig JL. Reduced granulocyte activation with a heparin coated device in an in vitro model of cardiopulmonary bypass. Artif Organs 1991;15:90-95.

    Google Scholar 

  306. Baksaas ST, Videm V, Mollnes TE, Pedersen T, Karlsen H, Svennevig JL. Effects on complement, granulocytes and platelets of a leukocyte-depletion filter during in vitro extracorporeal circulation. Scand Cardiovasc J 1997;31:73-78.

    Google Scholar 

  307. Baksaas ST, Videm V, Pedersen T, et al. Comparison of three oxygenator-coated and one total-circuit-coated extracorpereal devices. Perfusion 1999;14:119-127.

    Google Scholar 

  308. Jansen PJM, te Velthuis H, Huybregts RAJM, et al. Reduced complement activation and improved postoperative performance after cardiopulmonary bypass with heparin-coated circuits. J Thorac Cardiovasc Surg 1995;110:829-834.

    Google Scholar 

  309. Osterberg E, Bergstrom K, Holmberg K. Comparison of polysaccharide and polyethylene glycol coatings for reduction of protein adsorption on polystyrene surfaces. Coll Surf Physicochem Eng Asp 1993;77:159-169.

    Google Scholar 

  310. Moen O, Hogasen K, Fosse E, et al. Attenuation of change in leukocyte surface marker and complement activation with heparin-coated cardiopulmonary bypass. Ann Thorac Surg 1997;63:105-111.

    Google Scholar 

  311. Nakajima T, Osawa S, Ogawa M, et al. Clinical study of platelet function and coagulation/fibrinolysis with Duraflo II heparin coated cardiopulmonary bypass equipment. ASAIO J 1996;42:301-305.

    Google Scholar 

  312. von Segesser LK, Weiss BM, Garcia E, von Felten A, Turina MI. Reduction and elimination of systemic heparinization during cardiopulmonary bypass. J Thorac Cardiovasc Surg 1992;103:790-799.

    Google Scholar 

  313. von Segesser LK, Weiss BM, Pasic M, Garcia E, Turina MI. Risk and benefit of low systemic heparinization during open heart operations. Ann Thorac Surg 1994;58:391-398.

    Google Scholar 

  314. Ovrum E, Brosstad F, Holen EA, Tangen G, Abdelnoor M. Effects of coagulation and fibrinolysis with reduced versus full systemic heparinization and heparin-coated cardiopulmonary bypass. Circulation 1995;92:2579- 2584.

    Google Scholar 

  315. Ovrum E, Holen EA, Tangen G, et al. Completely heparinized cardiopulmonary bypass and reduced systemic heparin: Clinical and hemostatic effects. Ann Thorac Surg 1995;60:365-371.

    Google Scholar 

  316. Ichikawa Y, Kajiwara H, Hamada T. Evaluation of heparin-coated cardiopulmonary bypass circuits in coronary bypass operations. Jpn J Artif Organs 1998;27:135-139.

    Google Scholar 

  317. Aldea GS, Doursounian M, O'Gara P, et al. Heparinbonded circuits with a reduced anticoagulation protocol in primary CABG: A prospective, randomized study. Ann Thorac Surg 1996;62:410-418.

    Google Scholar 

  318. Aldea GS, O'Gara P, Shapira OM, et al. Effect of anticoagulation protocol on outcome in patients undergoing CABG with heparin-bonded cardiopulmonary bypass circuits. Ann Thorac Surg 1998;65:425-433.

    Google Scholar 

  319. Bannan S, Danby A, Cowan D, Ashraf S, Martin PG. Low heparinization with heparin-bonded bypass circuits: Is it a safe strategy? [see comments]. Ann Thorac Surg 1997;63:663-668.

    Google Scholar 

  320. Gorman RC, Ziats NP, Rao AK, et al. Surface-bound heparin fails to reduce thrombin formation during clinical cardiopulmonary bypass. J Thorac Cardiovasc Surg 1996;111:1-12.

    Google Scholar 

  321. Moulijn AC, Amsel BJ. The benefit of heparin-bound circuits. J Thorac Cardiovasc Surg 1996;112:557-558.

    Google Scholar 

  322. van der Hulst VPM, Grundeman PF, Moulijn AC, Rutten PJJM, Klopper PJ. Long-term extracorporeal blood bypass in dogs at low flows without systemic heparinization: Heparin-coated versus uncoated circuits. ASAIO Trans 1991;37:577-583.

    Google Scholar 

  323. van der Hulst VPM, Henny CP, Moulijn AC, Engbers G, ten Cate H, Grundeman PF. Veno-venous bypass without systemic heparinization using a centrifugal pump: A blind comparison of a heparin bonded circuit versus a non heparin bonded circuit. J Cardiovasc Surg 1989;30:118-123.

    Google Scholar 

  324. Edmunds LH. Surface-bound heparin–Panacea or peril. Ann Thorac Surg 1994;58:285-286.

    Google Scholar 

  325. Baumgartner FJ. Minimally invasive heart surgery. In: Baumgartner FJ, ed. Cardiothoracic Surgery. Austin: Landes Bioscience, 1999:263-273.

    Google Scholar 

  326. de Jaegere PP, Suyker WJ. Off-pump coronary artery bypass surgery. Heart 2002;88:313-318.

    Google Scholar 

  327. Abu-Omar Y, Taggart DP. Off-pump coronary artery bypass grafting. Lancet 2002;360:327-330.

    Google Scholar 

  328. Hart JC, Puskas JD, Sabik JF. Off-pump coronary revascularization: Current state of the art. Semin Thorac Cardiovasc Surg 2002;14:70-81.

    Google Scholar 

  329. Shennib H. A renaissance in cardiovascular surgery: Endovascular and device-based revascularization. Ann Thorac Surg 2001;72:S993-994.

    Google Scholar 

  330. Al-Ruzzeh S, George S, Yacoub M, Amrani M. The clinical outcome of off-pump coronary artery bypass surgery in elderly patients. Eur J Cadiothorac Surg 2001;20:1152- 1156.

    Google Scholar 

  331. Angelini GD, Taylor FC, Reeves BC, Ascione R. Early and midterm outcome after off-pump and on-pump surgery in Beating Heart Against Cardioplegic Arrest Studies (BHACAS 1 and 2)" a pooled analysis of two randomised controlled trials. Lancet 2002;359:1194-1199.

    Google Scholar 

  332. van Dijk D, Nierich AP, Jansen EW, et al. Early outcome after off-pump versus on-pump coronary artery bypass: Results from a randomized study. Circulation 2001;104:1761-1766.

    Google Scholar 

  333. Patel NC, Pullan DM, Fabri BM. Does off-pump total arterial revascularization without aortic manipulation influence neurological outcome. Heart Surg Forum 2002;5:28-32.

    Google Scholar 

  334. Taggart DP, Browne SM, Halligan PW, Wade DT. Is cardiopulmonary bypass still the cause of cognitive dysfunction after cardiac operations? J Thorac Cardiovasc Surg 1999;118:414-421.

    Google Scholar 

  335. Hernandez F, Cohn WE, Baribeau YR, et al. In-hospital outcomes of off-pump versus on-pump coronary artery bypass procedures: A multicenter experience. Ann Thorac Surg 2001;72:1528-1533.

    Google Scholar 

  336. Meharwal ZS, Trehan N. Off-pump coronary artery bypass grafting in patients with left ventricular dysfunction. Heart Surg Forum 2002;5:41-45.

    Google Scholar 

  337. Ascione R, Lloyd CT, Underwood MJ, Gomes WJ, Angelini GD. On-pump versus off-pump coronary revascularization: Evaluation of renal function. Ann Thorac Surg 1999;68:493-498.

    Google Scholar 

  338. Lee JD, Dang CR, Taoka S, Bowles BJ, Johnson EW. Coronary artery bypass grafting performed with or without a bypass pump: Early results. Hawaii Med J 2000;59:54-56.

    Google Scholar 

  339. Demers P, Cartier R. Multivessel off-pump coronary artery bypass surgery in the elderly. Eur J Cadiothorac Surg 2001;20:908-912.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Linden, M.D. The Hemostatic Defect of Cardiopulmonary Bypass. J Thromb Thrombolysis 16, 129–147 (2003). https://doi.org/10.1023/B:THRO.0000024051.12177.e9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:THRO.0000024051.12177.e9

Navigation