Skip to main content
Log in

Immersion Tomography of a Gas–Liquid Medium in a Granular Bed

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

Observed data are presented to demonstrate the wide experimental possibilities opened by a method for visualizing a gas–liquid medium in fixed and fluidized granular beds by immersion tomography. The immersion tomography method stems from the fact that, by selecting the properties of an immersion liquid in a particular way, it is possible to keep the medium optically transparent (by varying dimensionless hydrodynamic and heat- and mass-transfer parameters) and also to reconstruct a three-dimensional image of the granular bed. The method was used to study the free rise of single gas bubbles in a fixed granular bed formed by glass beads 7 mm in diameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Aerov, M.E. and Todes, O.M., Gidravlicheskie i teplovye osnovy raboty apparatov so statsionarnym i kipyashchim zernistym sloem(Hydraulic and Thermal Principles of Operation of Apparatuses with Fixed and Fluidized Granular Bed)}, Leningrad: Khimiya, 1958.

    Google Scholar 

  2. Mukhin, V.A. and Smirnova, N.N., Study of Heat and Mass Transfer during Filtration in Porous Media, Preprint of Inst. of Thermal Phys., Sib. Div., Russ. Acad. Sci., Novosibirsk, 1978, no. 26-78.

  3. Bogoyavlenskii, R.G., Gidrodinamika i teploobmen v vysokotemperaturnykh yadernykh reaktorakh s sharovymi tvelami(Hydrodynamics and Heat Transfer in High-Temperature Pebble-Bed Nuclear Reactors)}, Moscow: Atomizdat, 1978.

    Google Scholar 

  4. Avdeev, A.A., Balunov, B.F., Rybin, R.A., Soziev, R.I., and Filippov, G.A., Hydrodynamic Drag under Conditions of Flow of a Two-Phase Mixture in a Pebble Bed, Teplofiz. Vys. Temp., 2003, vol. 41, no. 3, p. 432. 0

    Google Scholar 

  5. Aerov, M.E., Todes, O.M., and Narinskii, D.A., Apparaty so statsionarnym zernistym sloem(Apparatuses with Fixed Granular Bed)}, Leningrad: Khimiya, 1979.

    Google Scholar 

  6. Gol'dshtik, M.A., Protsessy perenosa v zernistom sloe(Transfer Processes in Granular Bed)}, Novosibirsk: Inst. Teplofiz., Sib. Otd., Akad. Nauk SSSR, 1984.

  7. Volkov, V.I., Mukhin, V.A.,and Nakoryakov, V.E., Study of the Flow Pattern in a Porous Medium, Zh. Prikl. Khim.1981}, vol. 54, no. 4, p. 838.

  8. Volkov, V.I., Titkov, V.I., and Tomsons, Ya.Ya., Study of the Velocity Field in a Porous Medium with a Laser Doppler Anemometer, Avtometriya, 1982, no. 3, p. 82.

  9. Ioffe, B.V., Refraktometricheskie metody khimii(Refractometric Methods in Chemistry)}, Leningrad: Khimiya, 1974.

    Google Scholar 

  10. Anisimov, K.G., Anisimova, E.A., and Volkov, V.I., Experimental Study of the Refractive Index and Transfer Properties of Heavy Liquids, Izv. Altaisk. Gos. Univ., 1997, no. 1, p. 58.

  11. van Nes, K. and van Westen, H.A., Aspects of the Constitution of Mineral Oils, New York: Elsevier, 1951. Translated under the title Sostav maslyanykh fraktsii nefti i ikh analiz, Moscow: Inostrannaya Literatura, 1954.

    Google Scholar 

  12. Batsanov, S.S., Strukturnaya refraktometriya (Structural Refractometry), Moscow: Mosk. Gos. Univ., 1959.

    Google Scholar 

  13. Levin, G.G. and Vishnyakov, G.N., Opticheskaya tomografiya (Optical Tomography), Moscow: Radio i Svyaz', 1989.

    Google Scholar 

  14. Monnereau, C., Vignes-Adler, M., Optical Tomography of Real Three-Dimensional Foams, J. Colloid Interface Sci., 1998, vol. 202, p. 45.

    Google Scholar 

  15. Kutepov, A.M., Pokusaev, B.G., Kazenin, D.A., Karlov, ?S.P., and Vyaz'min, A.V., Interfacial Mass Transfer in the Liquid–Gas System: An Optical Study, Teor. Osn. Khim. Tekhnol., 2001, vol. 35, no. 3, p. 227.

    Google Scholar 

  16. Ng, K.M., A Model for Flow Regimes Transitions in Cocurrent Down-Flow Trickle-Bed Reactors, AIChE J., 1986, vol. 32, no. 1, p. 115.

    Google Scholar 

  17. Chinnov, E.A., Study of the Effect of the Walls of a Cylindrical Vertical Channel on the Velocity of Rise of Single Bubbles, in Teplofizika i gidrodinamika protsessov kipeniya i kondensatsii (Thermal Physics and Hydrodynamics of Boiling and Condensation), Novosibirsk: Inst. Teplofiz., Sib. Otd., Akad. Nauk SSSR, 1985, p. 125.

    Google Scholar 

  18. Harper, V.F., The Motion of Bubbles and Drops Through Liquid, Adv. Appl. Mech., 1972, vol. 12, p. 59.

    Google Scholar 

  19. Shtemler, Y., Shreiber, I., and Herskowitz, M., Micro-Level Instability of Bubble in Packings, J. Chem. Eng. Sci., 2003, vol. 58, p. 1631.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pokusaev, B.G., Karlov, S.P. & Shreiber, I. Immersion Tomography of a Gas–Liquid Medium in a Granular Bed. Theoretical Foundations of Chemical Engineering 38, 1–5 (2004). https://doi.org/10.1023/B:TFCE.0000014382.41730.4c

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:TFCE.0000014382.41730.4c

Keywords

Navigation