Skip to main content
Log in

Algebra with Quadratic Commutation Relations for an Axially Perturbed Coulomb–Dirac Field

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

The motion of a particle in the field of an electromagnetic monopole (in the Coulomb–Dirac field) perturbed by an axially symmetric potential after quantum averaging is described by an integrable system. Its Hamiltonian can be written in terms of the generators of an algebra with quadratic commutation relations. We construct the irreducible representations of this algebra in terms of second-order differential operators; we also construct its hypergeometric coherent states. We use these states in the first-order approximation with respect to the perturbing field to obtain the integral representation of the eigenfunctions of the original problem in terms of solutions of the model Heun-type second-order ordinary differential equation and present the asymptotic approximation of the corresponding eigenvalues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. V. P. Maslov, Operator Methods [in Russian], Nauka, Moscow (1973); English transl.: Operational Methods, Mir, Moscow (1976).

    Google Scholar 

  2. M. V. Karasev, Funct.Anal.Appl., 18, 140–142 (1984).

    Google Scholar 

  3. M. V. Karasev and V. P. Maslov, Russ.Math.Surveys, 39, No. 6, 133–205 (1984); M. V. Karasev, “Quantum reduction to orbits of symmetry algebra and the Ehrenfest problem [in Russian],” Preprint ITF-87-157P, Inst. Theor. Phys., Ukrainian Acad. Sci., Kiev (1987).

    Google Scholar 

  4. J. R. Klauder and B. S. Skagerstam, Coherent States: Applications in Physics and Mathematics, World Scientific, Singapore (1985); A. M. Perelomov, Generalized Coherent States and Their Applications, Springer, Berlin (1986).

    Google Scholar 

  5. M. Karasev, Russ.J.Math.Phys., 3, 393–400 (1995).

    Google Scholar 

  6. M. V. Karasev, Lett.Math.Phys., 56, 229–269 (2001).

    Google Scholar 

  7. M. V. Karasev and E. M. Novikova, Russ.Math.Surveys, 49, No. 5, 179–180 (1994).

    Google Scholar 

  8. M. V. Karasev and E. M. Novikova, Theor.Math.Phys., 108, 1119–1159 (1996).

    Google Scholar 

  9. M. V. Karasev and E. M. Novikova, J.Math.Sci. (New York), 95, 2703–2798 (1999).

    Google Scholar 

  10. M. V. Karasev and E. M. Novikova, “Adapted connections, Hamilton dynamics, geometric phases, and quantization over isotopic submanifolds,” in: Coherent Transform,Quantization,and Poisson Geometry (M.V. Karasev, ed.), Amer. Math. Soc., Providence, R. I. (1998), pp. 1–202.

    Google Scholar 

  11. M. V. Karasev and E. M. Novikova, Math.Notes, 70, 779–797 (2001).

    Google Scholar 

  12. M. V. Karasev and E. M. Novikova, Math.Notes, 72, 48–65 (2002).

    Google Scholar 

  13. V. P. Maslov, Theor.Math.Phys., 33, 960–976 (1977); M. V. Karasev and V. P. Maslov, Russ.Math.Surveys, 45, No. 5, 51–98 (1990); Nonlinear Poisson Brackets: Geometry and Quantization [in Russian], Nauka, Moscow (1991); English transl., Amer. Math. Soc., Providence, R. I. (1993).

    Google Scholar 

  14. E. K. Sklyanin, Funct.Anal.Appl., 16, 263–270 (1983); 17, 273–284 (1983).

    Google Scholar 

  15. H. V. McIntosh and A. Cisneros, J.Math.Phys., 11, 896–916 (1970).

    Google Scholar 

  16. I. Mladenov and V. Tsanov, J.Phys.A, 20, 5865–5871 (1987).

    Google Scholar 

  17. T. Iwai and Y. Uwano, J.Phys.A, 21, 4083–4104 (1988).

    Google Scholar 

  18. I. Mladenov, Ann.Inst.H.Poincaré, 50, 219–227 (1989).

    Google Scholar 

  19. A. Yoshioka and K. Ii, J.Math.Phys., 31, 1388–1394 (1990).

    Google Scholar 

  20. H. Bateman and A. Erdélyi, eds., Higher Transcendental Fun tions (Based on notes left by H. Bateman), Vol. 1, McGraw-Hill, New York (1953).

    Google Scholar 

  21. H. Bateman and A. Erdélyi, eds., Higher Transcendental Fun tions (Based on notes left by H. Bateman), Vol. 2, McGraw-Hill, New York (1953).

    Google Scholar 

  22. E. Kamke, Differentialgleichungen, Lösunsmethoden und Lösungen, Acad. Verlag, Leipzig (1959).

    Google Scholar 

  23. P. Kustaanheimo, Ann.Univ.Turku A, 73, No. 1, 3–7 (1964); P. Kustaanheimo and E. Stiefel, J.Reine Angew. Math., 218, 204–219 (1965).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karasev, M.V., Novikova, E.M. Algebra with Quadratic Commutation Relations for an Axially Perturbed Coulomb–Dirac Field. Theoretical and Mathematical Physics 141, 1698–1724 (2004). https://doi.org/10.1023/B:TAMP.0000049763.86662.16

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:TAMP.0000049763.86662.16

Navigation