Skip to main content
Log in

Gauge Dependence of the Effective Gravitational Field

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We analyze the gauge ambiguity problem for the effective gravitational field from the standpoint of the measurement process. The motion of a test point particle playing the role of a measuring device is investigated in the field of a point gravitating mass in the one-loop approximation. We show that the gravitational field value determined from the effective equations of motion of the device explicitly depends on the Feynman gauge parameter. This dependence is essential in the sense that a gauge variation cannot be interpreted as a deformation of the reference frame, which leads to a gauge ambiguity in the values of observed quantities. In particular, this result disproves the hypothesis that gauge dependence is canceled in the effective equations of motion of a classical point particle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. I. A. Batalin and G. A. Vilkovisky, Phys.Lett.B,102 27 (1981).

    Google Scholar 

  2. P. M. Lavrov, I. V. Tyutn, and B. L. Voronov, Sov.J.Nucl.Phys., 36 292 (1982).

    Google Scholar 

  3. K. A. Kazakov, Class.Q.Grav.,19 3017 (2002).

    Google Scholar 

  4. K. A. Kazakov, Phys.Rev.D,66 044003 (2002).

    Google Scholar 

  5. D. A. R. Dalvit and F. D. Mazzitelli, Phys.Rev.D, 56 7779 (1997);“Quantum corrections to the geodesic equation,”Talk presented at the meeting “Trends in Theoretical Physics II,”Buenos A res,Argentina (1998).

    Google Scholar 

  6. D. A. R. Dalvit, F. D. Mazzitelli, and C. Molina-Paris, Phys.Rev.D, 63 084023 (2001).

    Google Scholar 

  7. D. A. R. Dalvit and F. D. Mazzitelli, Phys.Rev.D, 60 084018 (1999).

    Google Scholar 

  8. K. A. Kazakov and P. I. Pronin, Phys.Rev.D, 62 044043 (2000).

    Google Scholar 

  9. Y. Iwasak, Progr.Theoret.Phys.,46 1587 (1971).

    Google Scholar 

  10. K. Hiida and M. Kikugawa, Progr.Theoret.Phys., 46 1610 (1971);K.Hiida and H.Okamura,Progr.Theoret. Phys.,47 1743 (1972);K.Yokoya,A.Sh m zu,H.Kato,and K.Hiida,Phys.Rev.D,16 2655 (1977).

    Google Scholar 

  11. K. A. Kazakov, Class.Q.Grav., 18 1039 (2001);Nucl.Phys.(Proc.Suppl.),104 232 (2002).

    Google Scholar 

  12. J. Zinn-Justin, “Renormalization of gauge theories,” in: Trends in Elementary Particle Theory (H. Rollnik and K. Dietz,eds.), Vol. 37, Springer, Berlin (1975), p.2.

    Google Scholar 

  13. N. K. Nielsen, Nucl.Phys.B, 101 173 (1975);H.Kluberg-Stern and J.B.Zuber,Phys.Rev.D,12 467,3159 (1975).

    Google Scholar 

  14. C. Becch, A. Rouet, and R. Stora, Ann.Phys., 98 287 (1976);Comm.Math.Phys.,42 127 (1975);I.V.Tyut n, “Gauge dependence n eld theory and statist cal physics in the operator formalism [in Russian ],”Preprint FIAN No.39,LebedevPhys.Inst.,Russ.Acad.Sc.,Moscow(1975).

    Google Scholar 

  15. P. I. Pronin and K. V. Stepanyantz, “New tensor package for REDUCE system,” in: New Computing Technique in Physics Research, IV (B. Denby and D. Perred-Gallix,eds.), World Scientifc, Singapore (1995), p. 187.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gribuk, T.S., Kazakov, K.A. & Pronin, P.I. Gauge Dependence of the Effective Gravitational Field. Theoretical and Mathematical Physics 141, 1654–1669 (2004). https://doi.org/10.1023/B:TAMP.0000049760.33160.69

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:TAMP.0000049760.33160.69

Navigation