Skip to main content
Log in

The Physics of Self-Adjoint Extensions: One-Dimensional Scattering Problem for the Coulomb Potential

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider a one-dimensional single-center scattering problem on the entire axis with the original potential α|x|−1. This problem reduces to seeking admissible self-adjoint extensions. Using conservation laws at the singularity point as necessary conditions and taking the analytic structure of fundamental solutions into account allows obtaining exact expressions for the wave functions (i.e., for the boundary conditions), scattering coefficients, singular corrections to the potential, and also the corresponding spectrum of bound states. It then turns out that pointlike δ-corrections to the potential must necessarily be involved for any choice of the admissible self-adjoint extension. The form of these corrections corresponds to the form of the renormalization terms obtained in quantum electrodynamics. The proposed method therefore indicates a 1 : 1 relation between boundary conditions, scattering coefficients, and δ-like additions to the potential and demonstrates the general possibilities arising in the analysis of self-adjoint extensions of the corresponding Hamilton operator. In the part pertaining to the renormalization theory, it can be considered a generalization of the renormalization method of Bogoliubov, Parasyuk, and Hepp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. K. M. Case, Phys. Rev., 80, 797 (1950).

    Article  Google Scholar 

  2. R. de L. Kronig and W. G. Penney, Proc. Roy. Soc. A, 130, 499 (1931).

    Google Scholar 

  3. W. M. Frank, D. J. Land, and R. M. Spector, Rev. Modern Phys., 43, 36 (1971); Yu. Demkov and V. N. Ostrovskii, Zero-Range Potentials and their Applications in Atomic Physics, Plenum, New York (1989).

    Article  Google Scholar 

  4. S. Albeverio, F. Gesztesy, R. Høegh-Krohn, and H. Holden, Solvable Models in Quantum Mechanics, Springer, New York (1988).

    Google Scholar 

  5. J. Zorbas, J. Math. Phys., 21, 840 (1980); S. Albeverio, F. Gesztesy, R. Hoegh-Krohn, and L. Streit, Ann. Inst. H. Poincare A, 38, 263 (1983).

    Article  Google Scholar 

  6. F. Rellich, Math. Z, 49, 702 (1943/1944).

    Google Scholar 

  7. F. A. Berezin and L. D. Faddeev, Sov. Math. Dokl., 2, 372 (1961).

    Google Scholar 

  8. M. Moshinsky, J. Phys. A, 26, 2245 (1993).

    Google Scholar 

  9. R. G. Newton, J. Phys. A, 27, 4717 (1994).

    Google Scholar 

  10. M. Moshinsky, J. Phys. A, 27, 4719 (1994).

    Google Scholar 

  11. M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vol. 1, Functional Analysis, Acad. Press, New York (1972).

    Google Scholar 

  12. M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vol. 2, Fourier Analysis. Self-Adjointness, Acad. Press, New York (1975).

    Google Scholar 

  13. E. H. Lieb and W. Liniger, Phys. Rev., 130, 1605 (1963); E. H. Lieb, Phys. Rev., 130, 1616 (1963).

    Article  Google Scholar 

  14. C. Aneziris, A. P. Balachandran and D. Sen, Internat. J. Mod. Phys. A, 6, 4721 (1991); "Erratum," 7, 1851 (1992); A. P. Balachandran, Internat. J. Mod. Phys. B, 5, 2585 (1991).

    Google Scholar 

  15. M. Carreau, E. Farhi, and S. Gutmann, Phys. Rev. D, 42, 1194 (1990); M. Carreau, J. Phys. A, 26, 427 (1993).

    Article  Google Scholar 

  16. F. A. B. Coutinho, Y. Nogami, and J. F. Perez, J. Phys. A, 32, L133 (1999).

    Google Scholar 

  17. F. A. Berezin and M. A. Shubin, The Schrodinger Equation[in Russian], MSU Publ., Moscow (1983); English transl., Kluwer, Dordrecht (1991).

    Google Scholar 

  18. F. W. J. Olver, Asymptotics and Special Functions, Acad. Press, New York (1974).

    Google Scholar 

  19. A. Baz, Ya. Zeldovich, and A. Perelomov, Scattering, Reactions, and Decays in Nonrelativistic Quantum Mechanics[in Russian], Nauka, Moscow (1971); English transl., Israel Program for Sci. Translations, Jerusalem (1969).

    Google Scholar 

  20. N. N. Bogoliubov and O. S. Parasiuk, Acta Math., 97, 227 (1957); K. Hepp, Comm. Math. Phys., 2, 301 (1966).

    Google Scholar 

  21. N. N. Bogoliubov and D. V. Shirkov, Introduction to the Theory of Quantum Fields[in Russian] (2nd ed.), Nauka, Moscow (1973); English transl. prev. ed., Wiley, New York (1959).

    Google Scholar 

  22. J. D. Bjorken and S. D. Drell, Relativistic Quantum Mechanics, McGraw-Hill, New York (1964).

    Google Scholar 

  23. F. J. Yndurain, Quantum Chromodynamics, Springer, New York (1983); R. M. Barnett, M. Dine, and L. McLerran, Phys. Rev. D, 22, 594 (1980).

    Google Scholar 

  24. M. Abramowitz and I. Stegan, eds., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Wiley, New York (1972).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mineev, V.S. The Physics of Self-Adjoint Extensions: One-Dimensional Scattering Problem for the Coulomb Potential. Theoretical and Mathematical Physics 140, 1157–1174 (2004). https://doi.org/10.1023/B:TAMP.0000036546.61251.5d

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:TAMP.0000036546.61251.5d

Navigation