Skip to main content
Log in

Nonlinear Electromagnetic Delay of Electromagnetic Signals Propagating in the Magnetic Meridian Plane of Pulsars and Magnetars

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We analyze the propagation of electromagnetic waves in the magnetic meridian planes of neutron stars with a strong magnetic field in the framework of the parameterized post-Maxwellian electrodynamics of the vacuum. The origin of these electromagnetic waves is the curvature emission of X-rays and gamma rays from high-energy electrons in the vicinity of the magnetic poles of neutron stars. We show that in the case of a slowly varying intensity of X-ray and gamma-ray emission, the delay of the slow normal mode of electromagnetic waves relative to the fast mode results in a shift of the time dependence of the intensity of the detected radiation with one polarization relative to that of the radiation with the orthogonal polarization. In the case of single X-ray or gamma-ray pulses, the delay effect results in the polarization of the detected pulse varying during the pulse length, the leading edge of all pulses being polarized normally to the magnetic equator plane of the neutron star. We note that the modern level of the experimental technique, in principle, allows observing the manifestations of the delay effect for signals of different polarizations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. D. L. Burke et al., Phys. Rev. Lett., 79, 1626 (1997).

    Google Scholar 

  2. V. I. Denisov and I. P. Denisova, Dokl. Rossiiskoi Akad. Nauk, 378, 463 (2001).

    Google Scholar 

  3. A. K. Harding and A. Muslimov, Astrophys. J., 508, 328 (1998).

    Google Scholar 

  4. P. A. Sturrock, Astrophys. J., 164, 529 (1971).

    Google Scholar 

  5. K. S. Cheng, C. Ho, and M. A. Ruderman, Astrophys. J., 300, 500 (1986).

    Google Scholar 

  6. V. I. Denisov, Theor. Math. Phys., 132, 1071 (2002).

    Google Scholar 

  7. P. A. Vshivtseva, V. I. Denisov, and I. P. Denisova, Phys. Dokl., 47, 798 (2002).

    Google Scholar 

  8. V. I. Denisov, I. P. Denisova, and I. V. Krivchenkov, JETP, 95, 194 (2002).

    Google Scholar 

  9. V. I. Denisov, I. P. Denisova, and S. I. Svertilov, Theor. Math. Phys., 135, 720 (2003).

    Google Scholar 

  10. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics [in Russian], Vol. 2, Classical Field Theory, Nauka, Moscow (1988); English transl., Pergamon, Oxford (1975).

    Google Scholar 

  11. V. I. Denisov, I. P. Denisova, and I. V. Krivchenkov, Math. Dokl., 67, 90 (2003).

    Google Scholar 

  12. I. M. Ternov, V. R. Khalilov, and V. N. Rodionov, Interaction of Charged Particles with Strong Electromagnetic Fields [in Russian], Moscow State Univ., Moscow (1982).

    Google Scholar 

  13. V. I. Denisov and S. I. Svertilov, Astron. Astrophys., 399, L39 (2003).

    Google Scholar 

  14. L. M. Cohen and E. T. Toton, Astrophys. Lett., 7, 213 (1971).

    Google Scholar 

  15. L. Mestel, Nature Phys. Sci., 233, 149 (1971).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Denisov, V.I., Denisova, I.P. & Svertilov, S.I. Nonlinear Electromagnetic Delay of Electromagnetic Signals Propagating in the Magnetic Meridian Plane of Pulsars and Magnetars. Theoretical and Mathematical Physics 140, 1001–1010 (2004). https://doi.org/10.1023/B:TAMP.0000033036.49943.f4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:TAMP.0000033036.49943.f4

Navigation