Skip to main content
Log in

Massless Elementary Particles in a Quantum Theory over a Galois Field

  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

We consider massless elementary particles in a quantum theory based on a Galois field (GFQT). We previously showed that the theory has a new symmetry between particles and antiparticles, which has no analogue in the standard approach. We now prove that the symmetry is compatible with all operators describing massless particles. Consequently, massless elementary particles can have only half-integer spin (in conventional units), and the existence of massless neutral elementary particles is incompatible with the spin–statistics theorem. In particular, this implies that the photon and the graviton in the GFQT can only be composite particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. E. P. Wigner, Ann. Math., 40, 149 (1939).

    Google Scholar 

  2. P. A. M. Dirac, “Theory of electrons and positrons,” in: The World Treasury of Physics, Astronomy, and Mathematics (T. Ferris, ed.), Little Brown, Boston (1991), p. 80.

    Google Scholar 

  3. F. M. Lev, Sov. J. Nucl. Phys., 48, 575 (1988); J. Math. Phys., 30, 1985 (1989); 34, 490 (1993).

    Google Scholar 

  4. F. M. Lev, “Problem of constructing discrete and finite quantum theory,” hep-th/0206078 (2002).

  5. B. L. Van der Waerden, Algebra I, Springer, Berlin (1967); K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, Springer, New York (1987); H. Davenport, The Higher Arithmetic, Cambridge Univ. Press, Cambridge (1999).

    Google Scholar 

  6. E. M. Friedlander and B. J. Parshall, Bull. Am. Math. Soc., 17, 129 (1987).

    Google Scholar 

  7. C. Fronsdal, Rev. Modern Phys., 37, 221 (1965).

    Google Scholar 

  8. N. T. Evans, J. Math. Phys., 8, 170 (1967).

    Google Scholar 

  9. B. Braden, Bull. Am. Math. Soc., 73, 482 (1967).

    Google Scholar 

  10. H. Zassenhaus, Proc. Glasgow Math. Assoc., 2, 1 (1954).

    Google Scholar 

  11. E. Inonu and E. P. Wigner, Nuovo Cimento, 9, 705 (1952).

    Google Scholar 

  12. Yu. V. Novozhilov, An Introduction to Elementary Particle Theory [in Russian], Nauka, Moscow (1972).

    Google Scholar 

  13. S. Weinberg, Quantum Theory of Fields, Cambridge Univ. Press, Cambridge (1995).

    Google Scholar 

  14. W. Pauli, Phys. Rev., 58, 116 (1940).

    Google Scholar 

  15. W. Pauli, “Exclusion principle, Lorentz group, and reflection of space–time and charge,” in: Niels Bohr and the Development of Physics (W. Pauli, ed.), Pergamon, London (1955), p. 30; G. Gravert, G. Luders, and G. Rollnik, Fortschr. Phys., 7, 291 (1959).

    Google Scholar 

  16. M. Flato and C. Fronsdal, Lett. Math. Phys., 2, 421 (1978); L. Castell and W. Heidenreich, Phys. Rev. D, 24, 371 (1981); C. Fronsdal, Phys. Rev. D, 26, 1988 (1982).

    Google Scholar 

  17. P. A. M. Dirac, J. Math. Phys., 4, 901 (1963).

    Google Scholar 

  18. E. P. Wigner, “The unreasonable effectiveness of mathematics in natural sciences,” in: The World Treasury of Physics, Astronomy, and Mathematics (T. Ferris, ed.), Little Brown, Boston (1991), p. 526.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lev, F.M. Massless Elementary Particles in a Quantum Theory over a Galois Field. Theoretical and Mathematical Physics 138, 208–225 (2004). https://doi.org/10.1023/B:TAMP.0000014852.33122.50

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:TAMP.0000014852.33122.50

Navigation