Skip to main content
Log in

Fracture Resistance of Residually-Stressed Ceramic Laminated Structures

  • Published:
Strength of Materials Aims and scope

Abstract

We have studied the effect of residual stresses on fracture resistance and crack arrest behavior of asymmetric ceramic laminated Si 3 N 4/Si 3 N 4–TiN structures. Using the compliance method, we assessed the technique of R-curve construction for laminar composites. For laminar structures with layers varying by their elastic characteristics we developed an analytical method for calculation of “fracture resistance – crack length” dependence. The method applicability is verified by calculation of stress intensity factors for laminar specimens with an edge crack. The calculated results are compared to the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. M. Chan, "Layered ceramics: processing and mechanical behavior," Ann. Rev. Mater. Sci., 27, 249–282 (1997).

    Google Scholar 

  2. W. J. Clegg, K. Kendall, N. McN Alford, et al., "A simple way to make tough ceramics," Nature, 347, 455–457 (1990).

    Google Scholar 

  3. R. Lakshminarayanan, D. K. Shetty, and R. A. Cutler, "Toughening of layered ceramic composites with residual surface compression," J. Amer. Ceram. Soc., 79, No. 1, 79–87 (1996).

    Google Scholar 

  4. N. Lugovoi, N. Orlovskaya, V. Slyunyayev, et al., "Crack bifurcation features in laminar specimens with fixed total thickness," Comp. Sci. Tech., 62, 819–830 (2002).

    Google Scholar 

  5. D. B. Marshall, J. J. Ratto, and F. F. Lange, "Enhanced fracture toughness in layered microcomposites of CeO-ZrO2 and Al2O3," J. Amer. Ceram. Soc., 74, No. 12, 2979–2987 (1991).

    Google Scholar 

  6. N. Lugovoi, N. Orlovskaya, K. Berroth, and J. Kuebler, "Macrostructural engineering of ceramic-matrix layered composites," Comp. Sci. Tech., 59, 1429–1437 (1999).

    Google Scholar 

  7. A. J. Blattner, R. Lakshminarayanan, and D. K. Shetty, "Toughening of layered ceramic composites with residual surface compression: effects of layer thickness," Eng. Fract. Mech., 68, 1–7 (2001).

    Google Scholar 

  8. A. G. Evans, "Perspective on the development of high-toughness ceramics," J. Amer. Ceram. Soc., 73, No. 2, 187–206 (1990).

    Google Scholar 

  9. V. M. Sglavo, L. Larentis, and D. J. Green, "Flaw-insensitive ion-exchanged glass: I, theoretical aspects," J. Amer. Ceram. Soc., 84, No. 8, 1827–1831 (2001).

    Google Scholar 

  10. R. J. Moon, M. Hoffman, J. Hilden, et al., "Weight function analysis on the R-curve behavior of multilayered alumina-zirconia composites," J. Amer. Ceram. Soc., 85, No. 6, 1505–1511 (2002).

    Google Scholar 

  11. T. Fett and D. Munz, "Influence of crack-surface interactions on stress intensity factor in ceramics," J. Mater. Sci. Lett., 9, 1403–1406 (1990).

    Google Scholar 

  12. S. P. Timoshenko and J. N. Goodier, Theory of Elasticity, 3rd edn., McGraw-Hill, New York (1970).

    Google Scholar 

  13. A. E. Giannakopoulos, S. Suresh, M. Finot, and M. Olsson, "Elastoplastic analysis of thermal cycling: layered materials with compositional gradients," Acta Metall. Mater., 43, No. 4, 1335–1354 (1995).

    Google Scholar 

  14. V. Sergo, D. M. Lipkin, G. de Portu, and D. R. Clarke, "Edge stresses in alumina/zirconia laminate," J. Amer. Ceram. Soc., 80, No. 7, 1633–1638 (1997).

    Google Scholar 

  15. J. E. Srawley, "Wide range stress intensity factor expressions for ASTM E 399 standard fracture toughness specimens," Int. J. Fract., 12, 475–476 (1976).

    Google Scholar 

  16. N. A. Orlovskaya, J. Kuebler, V. I. Subotin, and N. I. Lugovoi, "High toughness ceramic laminates by design of residual stresses," in: F. T. Wallenberger, N. Weston, K. Chawla, R. Ford, and R. P. Wool (Eds.), 2001 Fall Meeting Proceedings, Vol. 702 (2001).

  17. T. Hyatt, "Electronics: Tape casting, roll compaction," Amer. Ceram. Soc. Bull., 74, 56–59 (1995).

    Google Scholar 

  18. G. A. Gogotsi, "Fracture toughness studies on ceramics and ceramic particulate composites at different temperatures," in: J. A. Salem, G. D. Quinn, and M. G. Jenkins (Eds.), Fracture Resistance Testing of Monolithic and Composite Brittle Materials, ASTM STP 1409, West Conshohocken, PA (2002), pp. 199–212.

    Google Scholar 

  19. M. Sakai, K. Urashima, and M. Inagaki, "Energy principle of elastic-plastic fracture and its application to the fracture mechanics of a polycrystalline graphite," J. Amer. Ceram. Soc., 66, No. 12, 868–874 (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gogotsi, G.A., Lugovoi, N.I. & Slyunyaev, V.N. Fracture Resistance of Residually-Stressed Ceramic Laminated Structures. Strength of Materials 36, 291–303 (2004). https://doi.org/10.1023/B:STOM.0000035763.36493.5a

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:STOM.0000035763.36493.5a

Navigation