Andel J. 1974. On evaluation of some two-dimensional normal probabilities. Aplikace Matematiky 19: 28-35.
Google Scholar
Cornish E.A. 1954. The multivariate t-distribution associated with a set of normal sample deviates. Australian Journal of Physics 7: 531-542.
Google Scholar
Cox D.R. and Wermuth N. 1991. A simple approximation for bivariate and trivariate normal integrals. International Statistics Review 59: 263-269.
Google Scholar
Davis P.J. and Rabinowitz P. 1984. Methods of Numerical Integration. Academic Press, New York.
Google Scholar
Drezner Z. 1978. Computation of the bivariate normal integral. Mathematics of Computation 32: 277-279.
Google Scholar
Drezner Z. and Wesolowsky G.O. 1989. On the computation of the bivariate normal integral. Journal of Statist. Comput. Simul. 35: 101-107.
Google Scholar
Drezner Z. 1992. Computation of the multivariate normal integral. ACM Transactions on Mathematics Software 18: 450-460.
Google Scholar
Drezner Z. 1994. Computation of the trivariate normal integral. Mathematics of Computation 62: 289-294.
Google Scholar
Donnelly T.G. 1963. Algorithm 462: Bivariate normal distribution. Communications of the ACM 16: 638.
Google Scholar
Dunnett C.W. and Sobel M. 1954.Abivariate generalization of student's t-distribution, with tables for certain special cases. Biometrika 41: 153-169.
Google Scholar
Gassmann H.I. 2000. Rectangle probabilities of trivariate normal distributions, technical report available at http://www.mgmt.dal.ca/sba/profs/hgassmann/.
Gassmann H.I., Deák I., and Szántai T. 2002. Computing multivariate normal probabilities: A new look. Journal of Computational and Graphical Statistics 11: 920-949.
Google Scholar
Genz A. 1993. Comparison of methods for the computation of multivariate normal probabilities. Computing Science and Statistics 25: 400-405.
Google Scholar
Genz A. and Bretz F. 2002. Comparison of methods for the computation of multivariate tprobabilities. J. Comp. Graph. Stat. 11: 950-971.
Google Scholar
Genz A., Bretz F., and Hochberg Y. 2003. Approximations to multivariate tprobabilities with application to multiple comparison procedures, technical report available at http://www.math.wsu.edu/faculty/genz.
Mee R.W. and Owen D.B. 1983. A simple approximation for bivariate normal probability. Journal of Quality Technology 15: 72-75.
Google Scholar
Owen D.B. 1956. Tables for computing bivariate normal probability. Annals of Mathematical Statistics 27: 1075-1090.
Google Scholar
Patefield M. and Tandy D. 2000. Fast and accurate computation of Owen's T-function. Journal of Statistical Software 5(5): http://www.jstatsoft.org.
Plackett R.L. 1954. A reduction formula for normal multivariate probabilities. Biometrika 41: 351-360.
Google Scholar
Piessens R., deDoncker E., Uberhuber C., and Kahaner D. 1983. QUADPACK: A Subroutine Package for Automatic Integration. Springer-Verlag, New York.
Google Scholar
Schervish M. 1984. Multivariate normal probabilities with error bound. Applied Statistics 33: 81-87.
Google Scholar
Sheppard W.F. 1900. On the computation of the double integral expressing normal correlation. Transactions of the Cambridge Philosophical Society 19: 23-69.
Google Scholar
Steen N.M., Byrne G.O., and Gelhard E.M. 1969. Gaussian quadratures. Mathematics of Computation 23: 661-671.
Google Scholar
Terza J.V. and Welland U. 1988. A comparison of bivariate normal algorithms. Journal of Statist. Comput. Simul. 19: 115-127.
Google Scholar
Tong Y.L. 1990. The Multivariate Normal Distribution. Springer-Verlag, New York.
Google Scholar
Wang M. and Kennedy W.J. 1992. A numerical method for accurately approximating multivariate normal probability. Computational Statistics and Data Analysis 13: 197-210.
Article
Google Scholar