Skip to main content

The Thermal Emission Imaging System (THEMIS) for the Mars 2001 Odyssey Mission

Abstract

The Thermal Emission Imaging System (THEMIS) on 2001 Mars Odyssey will investigate the surface mineralogy and physical properties of Mars using multi-spectral thermal-infrared images in nine wavelengths centered from 6.8 to 14.9 μm, and visible/near-infrared images in five bands centered from 0.42 to 0.86 μm. THEMIS will map the entire planet in both day and night multi-spectral infrared images at 100-m per pixel resolution, 60% of the planet in one-band visible images at 18-m per pixel, and several percent of the planet in 5-band visible color. Most geologic materials, including carbonates, silicates, sulfates, phosphates, and hydroxides have strong fundamental vibrational absorption bands in the thermal-infrared spectral region that provide diagnostic information on mineral composition. The ability to identify a wide range of minerals allows key aqueous minerals, such as carbonates and hydrothermal silica, to be placed into their proper geologic context. The specific objectives of this investigation are to: (1) determine the mineralogy and petrology of localized deposits associated with hydrothermal or sub-aqueous environments, and to identify future landing sites likely to represent these environments; (2) search for thermal anomalies associated with active sub-surface hydrothermal systems; (3) study small-scale geologic processes and landing site characteristics using morphologic and thermophysical properties; and (4) investigate polar cap processes at all seasons. THEMIS follows the Mars Global Surveyor Thermal Emission Spectrometer (TES) and Mars Orbiter Camera (MOC) experiments, providing substantially higher spatial resolution IR multi-spectral images to complement TES hyperspectral (143-band) global mapping, and regional visible imaging at scales intermediate between the Viking and MOC cameras.

The THEMIS uses an uncooled microbolometer detector array for the IR focal plane. The optics consists of all-reflective, three-mirror anastigmat telescope with a 12-cm effective aperture and a speed of f/1.6. The IR and visible cameras share the optics and housing, but have independent power and data interfaces to the spacecraft. The IR focal plane has 320 cross-track pixels and 240 down-track pixels covered by 10 ∼1-μm-bandwidth strip filters in nine different wavelengths. The visible camera has a 1024×1024 pixel array with 5 filters. The instrument weighs 11.2 kg, is 29 cm by 37 cm by 55 cm in size, and consumes an orbital average power of 14 W.

This is a preview of subscription content, access via your institution.

References

  1. Bandfield, J. L., 2002, Global mineral distributions on Mars, J. Geophys. Res. 107, 10.1029/2001JE001510.

  2. Bandfield, J. L., Hamilton, V. E. and Christensen, P. R.: 2000a, A global view of Martian volcanic compositions, Science 287, 1626–1630.

    Article  ADS  Google Scholar 

  3. Bandfield, J. L., Smith, M. D. and Christensen, P. R.: 2000b, Spectral dataset factor analysis and endmember recovery: Application to analysis of martian atmospheric particulates, J. Geophys. Res. 105, 9573–9588.

    Article  ADS  Google Scholar 

  4. Bargar, K. E.: 1978, Geology and thermal history of Mammoth Hot Springs, Yellowstone National Park, Wyoming, U.S. Geol. Surv. Bull. 1444, 55 pp.

  5. Bartholomew, M. J., Kahle, A. B. and Hoover, G.: 1989, Infrared spectroscopy (2.3-20 µm) for the geological interpretation of remotely-sensed multispectral thermal infrared data, Int. J. Remote Sensing 10, 529–544.

    Google Scholar 

  6. Bell, J. F., III, McCord, T. B. and Owensby, P. D.: 1990, Observational evidence of crystalline iron oxides on Mars, J. Geophys. Res. 95, 14447–14461.

    ADS  Google Scholar 

  7. Bell, J. F., III, McSween, H. Y., Murchie, S. L., Johnson, J. R., Reid, R., Morris, R. V., Anderson, R. C., Bishop, J. L., Bridges, N. T., Britt, D. T., Crisp, J. A., Economou, T., Ghosh, A., Greenwood, J. P., Gunnlaugsson, H. P., Hargraves, R. M., Hviid, S., Knudsen, J. M., Madsen, M. B., Moore, H. J., Reider, R., and Soderblom, L.: 2000, Mineralogic and compositional properties of Martian soil and dust: Results from Mars Pathfinder, J. Geophys. Res. 105, 1721–1755.

    Article  ADS  Google Scholar 

  8. Blaney, D. L. and McCord, T. B.: 1995, Indications of sulfate minerals in the martian soil from Earth-based spectroscopy, J. Geophys. Res. 100, 14,433–14,441.

    Article  ADS  Google Scholar 

  9. Boston, P. J., Ivanov, M. V. and McKay, C. P.: 1992, On the possibility of chemosynthetic ecosystems in subsurface habitats on Mars, Icarus 95, 300–308.

    Article  ADS  Google Scholar 

  10. Brock, T. D.: 1978, Thermophilic Microorganisms and Life at High Temperatures, Springer-Verlag, New York.

    Google Scholar 

  11. Burns, R. G.: 1993, Origin of electronic spectra of minerals in the visible to near-infrared region, in Remote Geochemical Analysis: Elemental and Mineralogical Composition, edited by C.M. Pieters, and P.A.J. Englert, Cambridge University Press.

  12. Carr, M. H.: 1996, Water on Mars, Oxford Univ. Press, New York.

    Google Scholar 

  13. Christensen, P. R., Bandfield, J. L., Hamilton, V. E., Howard, D. A., Lane, M. D., Piatek, J. L., Ruff, S. W., and Stefanov, W. L.: 2000a, 'A thermal emission spectral library of rock forming minerals', J. Geophys. Res. 105, 9735–9738.

    Article  ADS  Google Scholar 

  14. Christensen, P. R., Bandfield, J. L., Hamilton, V. E., Ruff, S. W., Kieffer, H. H, Titus, T., Malin, M. C., Morris, R. V., Lane, M. D., Clark, R. N., Jakosky, B. M., Mellon, M. T., Pearl, J. C., Conrath, B. J., Smith, M. D., Clancy, R. T., Kuzmin, R. O., Roush, T., Mehall, G. L., Gorelick, N., Bender, K., Murray, K., Dason, S., Greene, E., Silverman, S. H., and Greenfield,M.: 2001a, 'The Mars Global Surveyor Thermal Emission Spectrometer experiment: Investigation description and surface science results', J. Geophys. Res. 106, 23,823–23,871.

    ADS  Google Scholar 

  15. Christensen, P. R., Bandfield, J. L., Smith, M. D., Hamilton, V. E., and Clark, R. N.: 2000b, 'Identification of a basaltic component on the Martian surface from Thermal Emission Spectrometer data', J. Geophys. Res. 105, 9609–9622.

    Article  ADS  Google Scholar 

  16. Christensen, P. R., Clark, R. N., Kieffer, H. H., Malin, M. C., Pearl, J. C., Bandfield, J. L., Edgett, K. S., Hamilton, V. E., Hoefen, T., Lane, M. D., Morris, R. V., Pearson, R., Roush, T., Ruff, S.W., and Smith, M. D.: 2000c, 'Detection of crystalline hematite mineralization on Mars by the Thermal Emission Spectrometer: Evidence for near-surface water', J. Geophys. Res. 105, 9623–9642.

    Article  ADS  Google Scholar 

  17. Christensen, P. R. and Harrison, S. T.: 1993, 'Thermal infrared emission spectroscopy of natural surfaces: Application to desert varnish coatings on rocks', J. Geophys. Res. 98(B11), 19,819–19,834.

    ADS  Google Scholar 

  18. Christensen, P. R., Malin, M. C., Morris, R. V., Bandfield, J., Lane, M. D., and Edgett, K.: 2000d, 'The distribution of crystalline hematite on Mars from the Thermal Emission Spectrometer: Evidence for liquid water', Lunar and Planet. Sci. XXX, Abstract # 1627.

  19. Christensen, P. R., Malin, M. C., Morris, R. V., Bandfield, J. L., and Lane, M. D.: 2001b, 'Martian hematite mineral deposits: Remnants of water-driven processes on early Mars, J. Geophys. Res. 106, 23,873–23,885.

    ADS  Google Scholar 

  20. Christensen, P. R. and Zurek, R. W.: '1984, Martian north polar hazes and surface ice: Results from the Viking survey/completion mission', J. Geophys. Res. 89, 4587–4596.

    ADS  Google Scholar 

  21. Clark, R. N., Swayze, G. A., Singer, R. B., and Pollack, J. B.: 1990, 'High-resolution reflectance spectra of Mars in the 2.3 µm region: Evidence for the mineral scapolite', J. Geophys. Res. 95, 14,463–14,480.

    ADS  Google Scholar 

  22. Conel, J. E.: 1969, 'Infrared emissivities of silicates: Experimental results and a cloudy atmosphere model of spectral emission from condensed particulate mediums', J. Geophys. Res. 74, 1614–1634.

    ADS  Google Scholar 

  23. Conrath, B., Curran, R., Hanel, R., Kunde, V., Maguire, W., Pearl, J., Pirraglia, J., and Walker, J.: 1973, 'Atmospheric and surface properties of Mars obtained by infrared spectroscopy on Mariner 9', J. Geophys. Res. 78, 4267–4278.

    ADS  Google Scholar 

  24. Conrath, B. J., Pearl, J. C., Smith, M. D., Maguire, W. C., Christensen, P. R., Dason, S., and Kaelberer, M.S.: 2000, 'Mars Global Surveyor Thermal Emission Spectrometer (TES) Observations: Atmospheric temperatures during aerobraking and science phasing', J. Geophys. Res. 105, 9509–9520.

    Article  ADS  Google Scholar 

  25. Craddock, R. A. and Maxwell, T. A.: 1993, 'Geomorphic evolution of the Martian highlands through ancient fluvial processes', J. Geophys. Res. 98, 3453–3468.

    ADS  Google Scholar 

  26. Craddock, R. A., Maxwell, T. A., and Howard, A. D.: 1997, 'Crater morphometry and modification in the Sinus Sabaeus and Margaritifer Sinus regions of Mars', J. Geophys. Res. 102, 13,321–13,340.

    ADS  Google Scholar 

  27. Crisp, J., Kahle, A. B., and Abbott, E. A.: 1990, 'Thermal infrared spectral character of Hawaiian basaltic glasses', J. Geophys. Res. 95, 21657–21669.

    ADS  Google Scholar 

  28. Davies, D. W., Farmer, C. B., and LaPorte, D. D.: 1977, 'Behavior of volatiles in Mars' polar areas: A model incorporating new experimental data', J. Geophys. Res. 82, 3815–3822.

    ADS  Google Scholar 

  29. Edgett, K. S.: 1995, 'To Mars by way of the schoolhouse', Mercury 24, 28–31.

    ADS  Google Scholar 

  30. Edgett, K. S. and Christensen, P. R.: 1995, 'Multispectral thermal infrared observations of sediments in volcaniclastic aeolian dune fields: Implications for the Mars Global Surveyor Thermal Emission Spectrometer', Lunar Planet. Sci. XXVI, 355–356.

    ADS  Google Scholar 

  31. Edgett, K. S., Christensen, P. R., Dieck, P. A., Kingsbury, A. R., Kuhlman, S. D., Roberts, J. L., Wakefield, D. A., Rice, J. W. J., and Dodds, J.: 1997, 'K-12 and public outreach for NASA flight projects: Five years (1992-1997) of the Arizona Mars K-12 Education Program', Lunar Planet. Sci. 28, 323–324.

    ADS  Google Scholar 

  32. Edgett, K. S. and Rice, J. W. J.: 1995, 'Summary of education and public outreach in Mars Pathfinder Landing Site Workshop II', LPI Tech. Rept. 95-01 (Part 2), 17–29.

  33. Edgett, S. K. and Christensen, P. R.: 1996, 'K-12 education outreach program initiated by a university research team for the Mars Global Surveyor Thermal Emission Spectrometer project', J. Geoscience Education 44, 183–188.

    Google Scholar 

  34. Ellis, A. J. and McMahon, W. A. J.: 1977, Chemistry and Geothermal Systems, Academic Press, New York.

    Google Scholar 

  35. Working-Group: 1995, An Exobiological Strategy for Mars Exploration, NASA Headquarters.

  36. Farmer, V. C.: 1974, The Infrared Spectra of Minerals, 539 pp., Mineralogical Society, London.

    Google Scholar 

  37. Feely, K. C. and Christensen, P. R.: 1999, 'Quantitative compositional analysis using thermal emission spectroscopy: Application to igneous and metamorphic rocks', J. Geophys. Res. 104, 24,195–24,210.

    Article  ADS  Google Scholar 

  38. Gaffey, S. J.: 1984, Spectral reflectance of carbonate minerals and rocks in the visible and infrared (0.35 to 2.55 µm) and its applications in carbonate petrology, Ph.D. thesis, University of Hawaii.

  39. Gillespie, A. R., Kahle, A. B., and Palluconi, F. D.: 1984, 'Mapping alluvial fans in Death Valley, CA, using multichannel thermal infrared images', Geophys. Res. Ltr. 11(11), 1153–1156.

    ADS  Google Scholar 

  40. Golombek, M. P., Cook, R. A., Moore, H. J., and Parker, T. J.: 1997, 'Selection of the Mars Pathfinder landing site', J. Geophys. Res. 102, 3967–3988.

    Article  ADS  Google Scholar 

  41. Greeley, R., Lancaster, N., Lee, S., and Thomas, P.: 1992, Martian Eolian Processes, Sediments, and Features, in Mars, edited by H. Kieffer, B. Jakosky, C. Snyder, and M. Matthews, Univ. of Arizona Press, Tucson.

    Google Scholar 

  42. Haberle, R. M. and Jakosky, B.M.: 1990, 'Sublimation and transport of water from the north residual polar cap on Mars', J. Geophys. Res. 95(B2), 1423–1437.

    ADS  Google Scholar 

  43. Hamilton, V. E.: 1999, 'Linear deconvolution of mafic igneous rock spectra and implications for interpretation of TES data', Lunar and Planet. Sci. XXX, CD-ROM, Abstract 1825.

  44. Hamilton, V. E.: 2000, 'Thermal infrared emission spectroscopy of the pyroxene mineral series', J. Geophys. Res. 105, 9701–9716.

    Article  ADS  Google Scholar 

  45. Hamilton, V. E. and Christensen, P. R.: 2000, 'Determination of modal mineralogy of mafic and ultramafic igneous rocks using thermal emission spectroscopy', J. Geophys. Res. 105, 9717–9734.

    Article  ADS  Google Scholar 

  46. Hamilton, V. E., Wyatt, M. B., McSween, H. Y., and Christensen, P. R.: 2001, 'Analysis of terrestrial and martian volcanic compositions using thermal emission spectroscopy: II. Application to martian surface spectra from MGS TES', J. Geophys. Res. 106, 14,733–14,747.

    Article  ADS  Google Scholar 

  47. Hanel, R. A., Conrath, B. J., Hovis, W. A., Kunde, V. G., Lowman, P. D., Pearl, J. C., Prabhakara, C., Schlachman, B., and Levin, G. V.: 1972, 'Infrared spectroscopy experiment on the Mariner 9 mission: Preliminary results', Science 175, 305–308.

    ADS  Google Scholar 

  48. Hapke, B.: 1981, 'Bidirectional reflectance spectroscopy I. Theory', J. Geophys. Res. 86, 3039–3054.

    ADS  Article  Google Scholar 

  49. Hapke, B.: 1993, Combined Theory of Reflectance and Emittance Spectroscopy, in Remote Geochemical Analysis: Elemental and Mineralogical Composition, edited by C. M. Pieters and P. A. J. Englert, Cambridge University Press, Cambridge.

    Google Scholar 

  50. Henderson, B. G., Jakosky, B., and Randall, C. E.: 1992, 'A Monte Carlo Model of Polarized Thermal Emission from Particulate Planetary Surfaces', Icarus 99, 51–62.

    Article  ADS  Google Scholar 

  51. Herkenhoff, K. E., and Murray, B. C.: 1990a, 'Color and albedo of the south polar layered deposits on Mars', J. Geophys. Res. 95, 14,511–14,529.

    ADS  Google Scholar 

  52. Herkenhoff, K. E. and Murray, B. C.: 1990b, 'High-resolution topography and albedo of the south polar layered deposits on Mars', J. Geophys. Res. 95, 14,511–14,529.

    ADS  Google Scholar 

  53. Hook, S. J., Karlstrom, K. E., Miller, C. F., and McCaffrey, K. J. W.: 1994, 'Mapping the Piute Mountains, California, with thermal infrared multispectral scanner (TIMS) images', J. Geophys. Res. 99, 15,605–15,622.

    Article  ADS  Google Scholar 

  54. Hunt, G. R. and Logan, L. M.: 1972, 'Variation of single particle mid-infrared emission spectrum with particle size', Appl. Opt. 11, 142–147.

    ADS  Google Scholar 

  55. Hunt, G. R. and Salisbury, J. W.: 1970, 'Visible and near-infrared spectra of minerals and rocks: I. Silicate minerals', Mod. Geol. 1, 283–300.

    Google Scholar 

  56. Hunt, G. R., and Salisbury, J. W.: 1976, 'Mid-infrared spectral behavior of metamorphic rocks', Environ. Res. Paper, 543-AFCRL-TR-76-0003, 67.

    Google Scholar 

  57. Hunt, G. R. and Vincent, R. K.: 1968, 'The behavior of spectral features in the infrared emission from particulate surfaces of various grain sizes', J. Geophys. Res. 73, 6039–6046.

    ADS  Google Scholar 

  58. Jakosky, B. M.: 1998, The Search for Life on Other Planets, 336 pp., Cambridge Univ. Press.

  59. Jakosky, B. M., Mellon, M. T., Kieffer, H. H., Christensen, P. R., Varnes, E. S., and Lee, S.W.: 2000, 'The thermal inertia of Mars from the Mars Global Surveyor Thermal Emission Spectrometer', J. Geophys. Res. 105, 9643–9652.

    Article  ADS  Google Scholar 

  60. Jakosky, B. M. and Shock, E. L.: 1998, 'The biological potential of Mars, the early Earth, and Europa', J. Geophys. Res. 103, 19359–19364.

    Article  ADS  Google Scholar 

  61. James, P. B. and North, G. R.: 1982, 'The seasonal CO2 cycle on Mars: An application of an energy balance climate model', J. Geophys. Res. 87, 10,271–10,284.

    ADS  Google Scholar 

  62. Johnson, J. R., Christensen, P. R., and Lucey, P. G.: in press, 'Dust coatings on basalt and implications for thermal infrared spectroscopy of Mars', J. Geophys. Res.

  63. Kahle, A., Palluconi, F. D., and Christensen, P. R.: 1993, Thermal emission spectroscopy: Application to Earth and Mars, in Remote Geochemical Analysis: Elemental and Mineralogical Composition, edited by C.M. Pieters, and P.A.J. Englert, pp. 99–120, Cambridge University Press, Cambridge.

    Google Scholar 

  64. Kahle, A. B., Madura, D. P., and Soha, J. M.: 1980, 'Middle infrared multispectral aircraft scanner data: Analysis for geological applications', Appl. Optics 19, 2279–2290.

    ADS  Google Scholar 

  65. Kieffer, H. H.: 1979, 'Mars south polar spring and summer temperatures: A residual CO2 frost', J. Geophys. Res. 84, 8263–8289.

    ADS  Google Scholar 

  66. Kieffer, H. H.: 1990, 'H2O grain size and the amount of dust in Mars' residual north polar cap', J. Geophys. Res. 95, 1481–1494.

    ADS  Google Scholar 

  67. Kieffer, H. H., Martin, T. Z., Peterfreund, A. R., Jakosky, B. M., Miner, E. D., and Palluconi, F. D.: 1977, 'Thermal and albedo mapping of Mars during the Viking primary mission', J. Geophys. Res. 82, 4249–4292.

    ADS  Google Scholar 

  68. Kieffer, H. H., Titus, T., Mullins, K., and Christensen, P. R.: 2000, 'Mars south polar cap as observed by the Mars Global Surveyor Thermal Emission Spectrometer', J. Geophys. Res. 105, 9653–9700.

    Article  ADS  Google Scholar 

  69. Kieffer, H. H. and Zent, A. P.: 1992, 'Quasi-periodic climatic change on Mars, in Mars, edited by H. H. Kieffer, B. M. Jakosky, C. W. Snyder, and M. S. Matthews, Univ. of Arizona Press, Tucson.

    Google Scholar 

  70. Komatsu, G. and Baker, V. R.: 1997, 'Paleohydrology and flood geomorphology of Ares Vallis', J. Geophys. Res. 102, 4151–4160.

    Article  ADS  Google Scholar 

  71. Lane, M. D. and Christensen, P. R.: 1997, 'Thermal infrared emission spectroscopy of anhydrous carbonates', J. Geophys. Res. 102, 25,581–25,592.

    Article  ADS  Google Scholar 

  72. Lazerev, A. N.: 1972, Vibrational spectra and structure of silicates, 302 pp., Consultants Bureau, New York.

    Google Scholar 

  73. Lyon, R. J. P.: 1962, Evaluation of infrared spectroscopy for compositional analysis of lunar and planetary soils, in Stanford Research Institute Final Report Contract NASr, Stanford Research Institute.

  74. Malin, M. C. and Carr, M. H.: 1999, 'Groundwater formation of martian valleys', Nature 397, 589–591.

    Article  ADS  Google Scholar 

  75. Malin, M. C. and Edgett, K. S.: 2000, 'Sedimentary rocks of early Mars', Science 290, 1927–1937.

    Article  ADS  Google Scholar 

  76. Malin, M. C. and Edgett, K. S.: 2001, 'Mars Global Surveyor Mars Orbiter Camera: Interplanetary cruise through primary mission', J. Geophys. Res. 106, 23,429–23,570.

    ADS  Google Scholar 

  77. Martin, T. Z.: 1986, 'Thermal infrared opacity of the mars atmosphere', Icarus 66, 2–21.

    Article  ADS  Google Scholar 

  78. McCord, T. B., Clark, R. N., and Singer, R. B.: 1982, 'Mars: Near-infrared reflectance spectra of surface regions and compositional implications', J. Geophys. Res. 87, 3021–3032.

    ADS  Google Scholar 

  79. McKay, D. S., E. K. G. Jr., Thomas-Keprta, K. L., Vali, H., Romanek, C. S., Clemett, S. J., Chillier, X. D. F., Maechling, C. R., and Zare, R. N.: 1996, 'Search for past life on Mars: Possible relic biogenic activity in martian meteorite ALH84001', Science 273, 924–930.

    ADS  Google Scholar 

  80. McSween, H. Y., Jr.: 1994, 'What have we learned about Mars from SNC meteorites', Meteoritics 29, 757–779.

    ADS  Google Scholar 

  81. Mellon, M. T., Jakosky, B. M., Kieffer, H. H., and Christensen, P. R.: 2000, 'High resolution thermal inertia mapping from the Mars Global Surveyor Thermal Emission Spectrometer', Icarus 148, 437–455.

    Article  ADS  Google Scholar 

  82. Moersch, J. E. and Christensen, P. R.: 1995, 'Thermal emission from particulate surfaces: A comparison of scattering models with measured spectra', J. Geophys. Res. 100, 7,465–7,477.

    Article  ADS  Google Scholar 

  83. Morris, R. V., Gooding, J. L., Lauer, J. H. V., and Singer, R. B.: 1990, 'Origins of Marslike spectral and magnetic properties of a Hawaiian palagonitic soil', J. Geophys. Res. 95, 14,427–14,435.

    ADS  Google Scholar 

  84. Mustard, J. F., Erard, S., Bibring, J.-P., Head, J. W., Hurtrez, S., Langevin, Y., Pieters, C. M., and Sotin, C. J.: 1993, 'The surface of Syrtis Major: Composition of the volcanic substrate and mixing with altered dust and soil', J. Geophys. Res. 98, 3387–3400.

    ADS  Google Scholar 

  85. Mustard, J. F. and Hays, J. E.: 1997, 'Effects of hyperfine particles on reflectance spectra from 0.3 to 25 µm', Icarus (125), 145–163.

    Article  ADS  Google Scholar 

  86. Mustard, J. F. and Sunshine, J. M.: 1995, 'Seeing through the dust: Martian crustal heterogeneity and links to the SNC meteorites', Science 267, 1623–1626.

    ADS  Google Scholar 

  87. Nash, D. B. and Salisbury, J. W.: 1991, 'Infrared reflectance spectra of plagioclase feldspars', Geophys. Res. Lett. 18, 1151–1154.

    ADS  Google Scholar 

  88. Paige, D. A. and Ingersoll, A. P.: 1985, 'Annual heat balance of martian polar caps: Viking observations', Science 228, 1160–1168.

    ADS  Google Scholar 

  89. Palluconi, F. D. and Meeks, G. R.: 1985, Thermal infrared multispectral scanner (TIMS): An investigator's guide to TIMS data, Jet Propulsion Laboratory.

  90. Pearl, J. C., Smith, M. D., Conrath, B. J., Bandfield, J. L., and Christensen, P. R.: 2001, 'Observations of water-ice clouds by the Mars Global Surveyor Thermal Emission Spectrometer experiment: The first martian year', J. Geophys. Res. 12,325–12,338.

    Google Scholar 

  91. Pentecost, A.: 1996, High Temperature Ecosystems and their Chemical Interactions with their Environment, in Evolution of Hydrothermal Ecosystems on Earth (and Mars?), edited by G. R. Bock, and J. A. Goode, pp. 99–111, John Wiley and Sons, Chichester.

    Google Scholar 

  92. Pimentel, G. C., Forney, P. B., and Herr, K. C.: 1974, 'Evidence about hydrate and solid water in the martian surface from the 1969 Mariner infrared spectrometer', J. Geophys. Res. 79 (No. 11), 1623–1634.

    ADS  Google Scholar 

  93. Ramsey, M. S.: 1996, Quantitative Analysis of Geologic Surfaces: A Deconvolution Algorithm for Midinfrared Remote Sensing Data, Ph.D Dissertation thesis, Arizona State University.

  94. Ramsey, M. S. and Christensen, P. R.: 1992, The linear 'un-mixing' of laboratory thermal infrared spectra: Implications for the Thermal Emission Spectrometer (TES) experiment, Mars Observer, Lunar & Planet. Sci. XXIII, 1127–1128.

    ADS  Google Scholar 

  95. Ramsey, M. S. and Christensen, P. R.: 1998, 'Mineral abundance determination: Quantitative deconvolution of thermal emission spectra', J. Geophys. Res. 103, 577–596.

    Article  ADS  Google Scholar 

  96. Ramsey, M. S., Christensen, P. R., Lancaster, N., and Howard, D. A.: 1999, 'Identification of sand sources and transport pathways at Kelso Dunes, California using thermal infrared remote sensing', Geol. Soc. Am. Bull. 111, 636–662.

    Article  Google Scholar 

  97. Roush, T. L., Blaney, D. L., and Singer, R. B.: 1993, The surface composition of Mars as inferred from spectroscopic observations, in Remote Geochemical Analysis: Elemental and Mineralogical Composition, edited by C. M. Pieters, and P. A. J. Englert, Cambridge University Press.

  98. Ruff, S. W. and Christensen, P. R.: 2002, 'Bright and dark regions on Mars: Particle size and mineralogical characteristics based on Thermal Emission Spectrometer data', J. Geophys. Res., in press.

  99. Salisbury, J. W.: 1993, Mid-infrared spectroscopy: Laboratory data, in Remote Geochemical Analysis: Elemental and Mineralogical Composition, edited by C. Pieters, and P. Englert, pp. Ch. 4, Cambridge University Press, Cambridge.

    Google Scholar 

  100. Salisbury, J. W., D'Aria, D. M., and Jarosewich, E.: 1991, 'Mid-infrared (2.5-13.5 um) reflectance spectra of powdered stony meteorites', Icarus 92, 280–297.

    Article  ADS  Google Scholar 

  101. Salisbury, J. W. and Eastes, J. W.: 1985, 'The effect of particle size and porosity on spectral contrast in the mid-infrared', Icarus 64, 586–588.

    Article  ADS  Google Scholar 

  102. Salisbury, J. W., Hapke, B., and Eastes, J. W.: 1987a, 'Usefulness of weak bands in midinfrared remote sensing of particulate planetary surfaces', J. Geophys. Res. 92, 702–710.

    ADS  Google Scholar 

  103. Salisbury, J. W. and Wald, A.: 1992, 'The role of volume scattering in reducing spectral contrast of reststrahlen bands in spectra of powdered minerals', Icarus 96, 121–128.

    Article  ADS  Google Scholar 

  104. Salisbury, J. W., Wald, A., and D'Aria, D. M.: 1994, 'Thermal-infrared remote sensing and Kirchhoff's law 1. Laboratory measurements', J. Geophys. Res. 99, 11897–11911.

    Article  ADS  Google Scholar 

  105. Salisbury, J. W. and Walter, L. S.: 1989, 'Thermal infrared (2.5-13.5 µm) spectroscopic remote sensing of igneous rock types on particulate planetary surfaces', J. Geophys. Res. 94(No. B7), 9192–9202.

    ADS  Google Scholar 

  106. Salisbury, J. W., Walter, L. S., and Vergo, N.: 1987b, Mid-infrared (2.1-25 µm) spectra of minerals: First Edition, in U.S.G.S., Open File Report, pp. 87–263, U. S. Geological Survey Open File Report.

  107. Selivanov, A. S., Naraeva, M. K., Panfilov, A. S., Gektin, Y. M., Kharlamov, V. D., Romanov, A. V., Fomin, D. A., and Miroshnichenko, Y. Y.: 1989, 'Thermal imaging of the surface of Mars', Nature 341, 593–595.

    Article  ADS  Google Scholar 

  108. Shock, E. L.: 1997, 'High temperature life without photosynthesis as a model for Mars', J. Geophys. Res.

  109. Shoemaker, E. M.: 1963, Impact mechanics at Meteor Crater, Arizona, in The Moon, Meteorites, and Comets, edited by B. M. Middlehurst, and G. P. Kuiper, pp. 301–336, Univ. of Chicago Press, Chicago.

    Google Scholar 

  110. Silverman, S., Bates, D., Schueler, C., O'Donnell, B., Christensen, P., Mehall, G., Tourville, T. and Cannon, G.: 1999, Miniature Thermal Emission Spectrometer for the Mars 2001 Lander, Proceedings of the IEEE.

  111. Singer, R. B.: 1982, 'Spectral evidence for the mineralogy of high-albedo soils and dust on Mars', J. Geophys. Res. 87, 10,159–10,168.

    ADS  Google Scholar 

  112. Smith, M. D., Bandfield, J. L., and Christensen, P. R.: 2000, 'Separation of atmospheric and surface spectral features in Mars Global Surveyor Thermal Emission Spectrometer (TES) spectra: Models and atmospheric properties', J. Geophys. Res. 105, 9589–9608.

    Article  ADS  Google Scholar 

  113. Smith, M. D., Conrath, B. J., Pearl, J. C., and Christensen, P. R.: 2002, 'Thermal Emission Spectrometer observations of martian planet-encircling dust storm 2001A', Icarus 157, 259–263.

    Article  ADS  Google Scholar 

  114. Smith, M. D., Pearl, J. C., Conrath, B. J., and Christensen, P. R.: 2001a, 'Thermal Emission Spectrometer results: Mars atmospheric thermal structure and aerosol distribution', J. Geophys. Res. 106, 23929–23945.

    Article  ADS  Google Scholar 

  115. Smith, M. D., Pearl, J. C., Conrath, B. J., and Christensen, P. R.: 2001b, 'One Martian year of atmospheric observations by the Thermal Emission Spectrometer', Geophys. Res. Letters 28, 4263–4266.

    Article  ADS  Google Scholar 

  116. Smith, M. D., Pearl, J. C., Conrath, B. J., and Christensen, P. R.: 2001c, 'Thermal Emission Spectrometer results: Atmospheric thermal structure and aerosol distribution', J. Geophys. Res. 106, 23,929–23,945.

    ADS  Google Scholar 

  117. Stevens, T. O. and McKinley, J. P.: 1995, 'Lithoautotrophic microbial ecosystems in deep basalt aquifers', Science 270, 450–454.

    ADS  Google Scholar 

  118. Tamppari, L. K., Zurek, R. W., and Paige, D. A.: 2000, 'Viking era water ice clouds', J. Geophys. Res. 105, 4087–4107.

    Article  ADS  Google Scholar 

  119. Tanaka, K. L.: 1997, 'Sedimentary history and mass flow structures of Chryse and Acidalia Planitiae', Mars, J. Geophys. Res. 102, 4131–4149.

    Article  ADS  Google Scholar 

  120. Tanaka, K. L. and Leonard, G. J.: 1995, 'Geology and landscape evolution of the Hellas region of Mars', J. Geophys. Res. 100, 5407–5432.

    Article  ADS  Google Scholar 

  121. Thomas, P. and Gierasch, P. J.: 1995, 'Polar margin dunes and winds on Mars', J. Geophys. Res. 100, 5379–5406.

    ADS  Google Scholar 

  122. Thomas, P. C., Malin, M. C., and Edgett, K. S.: 2000, 'North-south geological differences between the residual polar caps on Mars', Nature 404, 161–164.

    Article  ADS  Google Scholar 

  123. Thomas, P. C., Squyres, S., Herkenhoff, K., Howard, A., and Murray, B.: 1992, Polar deposits of Mars in Mars, in Mars, edited by H. Kieffer, B. Jakosky, C. Snyder, and M. Matthews, pp. 767–795, Univ. Arizona Press, Tucson.

    Google Scholar 

  124. Thomas, P. C. and Weitz, C.: 1989, 'Sand dune materials and polar layered deposits on Mars', Icarus 81, 185–215.

    Article  ADS  Google Scholar 

  125. Thomson, J. L. and Salisbury, J. W.: 1993, 'The mid-infrared reflectance of mineral mixtures (7-14 µm)', Remote Sensing of Environment 45, 1–13.

    Article  ADS  Google Scholar 

  126. Titus, T. N., Kieffer, H. H., Mullins, K. F., and Christensen, P. R.: 2001, 'TES Pre-mapping data: Slab ice and snow flurries in the Martian north polar night', J. Geophys. Res. 106, 23,181–23,196.

    Article  ADS  Google Scholar 

  127. Van der Marel, H. W. and Beeutelspacher, H.: 1976, Atlas of infrared spectroscopy of clay minerals and their admixtures, 396pp., Elsevier Scientific Publishing Co., Amsterdam.

    Google Scholar 

  128. Vincent, R. K. and Hunt, G. R.: 1968, 'Infrared reflectance from mat surfaces', Appl. Opt. 7, 53–59.

    ADS  Article  Google Scholar 

  129. Vincent, R. K. and Thompson, F.: 1972, 'Spectral compositional imaging of silicate rocks', J. Geophys. Res. 17 (No. 14), 2465–2472.

    ADS  Google Scholar 

  130. Wald, A. E. and Salisbury, J.W.: 1995, 'Thermal infrared emissivity of powdered quartz', J. Geophys. Res. 100, 24665–24675.

    Article  ADS  Google Scholar 

  131. Walter, M. R. and Des Marais, D. J.: 1993, 'Preservation of biological information in thermal spring deposits: Developing a strategy for the search for fossil life on Mars', Icarus 101, 129–143.

    Article  ADS  Google Scholar 

  132. White, D. E., Hutchinson, R. A., and Keith, T. E. C.: 1988, The Geology and Remarkable Thermal Acitivty of Norris Geyser Basin, Yellowstone National Park, U.S. Geol. Survey Prof. Paper 1456.

  133. Wilson, E. B., Jr., Decius, J. C., and Cross, P. C.: 1955, Molecular Vibrations: The Theory of Infrared and Raman Vibrational Spectra, McGraw-Hill.

  134. Wyatt, M. B., Hamilton, V. E., McSween, J. H. Y., Christensen, P. R., and Taylor, L. A.: 2001, 'Analysis of terrestrial and martian volcanic compositions using thermal emission spectroscopy: I. Determination of mineralogy, chemistry, and classification strategies', J. Geophys. Res. 106, 14,711–14,732.

    Article  ADS  Google Scholar 

  135. Young, J.: 1999a, FM1 Absolute radiometric calibration reflectance region: uncertainty estimate, Raytheon Santa Barbara Remote Sensing, Santa Barbara.

    Google Scholar 

  136. Young, J.: 1999b, FM1 Absolute radiometric calibration thermal region: uncertainty estimate, Raytheon Santa Barbara Remote Sensing, Santa Barbara.

    Google Scholar 

  137. Young, J.: 1999c, Summary of the Blackbody Calibration Source (BCS) and Space View Source (SVS) refurbishment and calibration process, Raytheon Santa Barbara Remote Sensing, Santa Barbara.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Christensen, P.R., Jakosky, B.M., Kieffer, H.H. et al. The Thermal Emission Imaging System (THEMIS) for the Mars 2001 Odyssey Mission. Space Science Reviews 110, 85–130 (2004). https://doi.org/10.1023/B:SPAC.0000021008.16305.94

Download citation

Keywords

  • Thermal Emission
  • Travertine
  • Martian Surface
  • Band Depth
  • THEMIS Resolution