Space Science Reviews

, Volume 110, Issue 1–2, pp 85–130 | Cite as

The Thermal Emission Imaging System (THEMIS) for the Mars 2001 Odyssey Mission

  • Philip R. Christensen
  • Bruce M. Jakosky
  • Hugh H. Kieffer
  • Michael C. Malin
  • Harry Y. McSweenJr.
  • Kenneth Nealson
  • Greg L. Mehall
  • Steven H. Silverman
  • Steven Ferry
  • Michael Caplinger
  • Michael Ravine
Article

Abstract

The Thermal Emission Imaging System (THEMIS) on 2001 Mars Odyssey will investigate the surface mineralogy and physical properties of Mars using multi-spectral thermal-infrared images in nine wavelengths centered from 6.8 to 14.9 μm, and visible/near-infrared images in five bands centered from 0.42 to 0.86 μm. THEMIS will map the entire planet in both day and night multi-spectral infrared images at 100-m per pixel resolution, 60% of the planet in one-band visible images at 18-m per pixel, and several percent of the planet in 5-band visible color. Most geologic materials, including carbonates, silicates, sulfates, phosphates, and hydroxides have strong fundamental vibrational absorption bands in the thermal-infrared spectral region that provide diagnostic information on mineral composition. The ability to identify a wide range of minerals allows key aqueous minerals, such as carbonates and hydrothermal silica, to be placed into their proper geologic context. The specific objectives of this investigation are to: (1) determine the mineralogy and petrology of localized deposits associated with hydrothermal or sub-aqueous environments, and to identify future landing sites likely to represent these environments; (2) search for thermal anomalies associated with active sub-surface hydrothermal systems; (3) study small-scale geologic processes and landing site characteristics using morphologic and thermophysical properties; and (4) investigate polar cap processes at all seasons. THEMIS follows the Mars Global Surveyor Thermal Emission Spectrometer (TES) and Mars Orbiter Camera (MOC) experiments, providing substantially higher spatial resolution IR multi-spectral images to complement TES hyperspectral (143-band) global mapping, and regional visible imaging at scales intermediate between the Viking and MOC cameras.

The THEMIS uses an uncooled microbolometer detector array for the IR focal plane. The optics consists of all-reflective, three-mirror anastigmat telescope with a 12-cm effective aperture and a speed of f/1.6. The IR and visible cameras share the optics and housing, but have independent power and data interfaces to the spacecraft. The IR focal plane has 320 cross-track pixels and 240 down-track pixels covered by 10 ∼1-μm-bandwidth strip filters in nine different wavelengths. The visible camera has a 1024×1024 pixel array with 5 filters. The instrument weighs 11.2 kg, is 29 cm by 37 cm by 55 cm in size, and consumes an orbital average power of 14 W.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bandfield, J. L., 2002, Global mineral distributions on Mars, J. Geophys. Res. 107, 10.1029/2001JE001510.Google Scholar
  2. Bandfield, J. L., Hamilton, V. E. and Christensen, P. R.: 2000a, A global view of Martian volcanic compositions, Science 287, 1626–1630.CrossRefADSGoogle Scholar
  3. Bandfield, J. L., Smith, M. D. and Christensen, P. R.: 2000b, Spectral dataset factor analysis and endmember recovery: Application to analysis of martian atmospheric particulates, J. Geophys. Res. 105, 9573–9588.CrossRefADSGoogle Scholar
  4. Bargar, K. E.: 1978, Geology and thermal history of Mammoth Hot Springs, Yellowstone National Park, Wyoming, U.S. Geol. Surv. Bull. 1444, 55 pp.Google Scholar
  5. Bartholomew, M. J., Kahle, A. B. and Hoover, G.: 1989, Infrared spectroscopy (2.3-20 µm) for the geological interpretation of remotely-sensed multispectral thermal infrared data, Int. J. Remote Sensing 10, 529–544.Google Scholar
  6. Bell, J. F., III, McCord, T. B. and Owensby, P. D.: 1990, Observational evidence of crystalline iron oxides on Mars, J. Geophys. Res. 95, 14447–14461.ADSGoogle Scholar
  7. Bell, J. F., III, McSween, H. Y., Murchie, S. L., Johnson, J. R., Reid, R., Morris, R. V., Anderson, R. C., Bishop, J. L., Bridges, N. T., Britt, D. T., Crisp, J. A., Economou, T., Ghosh, A., Greenwood, J. P., Gunnlaugsson, H. P., Hargraves, R. M., Hviid, S., Knudsen, J. M., Madsen, M. B., Moore, H. J., Reider, R., and Soderblom, L.: 2000, Mineralogic and compositional properties of Martian soil and dust: Results from Mars Pathfinder, J. Geophys. Res. 105, 1721–1755.CrossRefADSGoogle Scholar
  8. Blaney, D. L. and McCord, T. B.: 1995, Indications of sulfate minerals in the martian soil from Earth-based spectroscopy, J. Geophys. Res. 100, 14,433–14,441.CrossRefADSGoogle Scholar
  9. Boston, P. J., Ivanov, M. V. and McKay, C. P.: 1992, On the possibility of chemosynthetic ecosystems in subsurface habitats on Mars, Icarus 95, 300–308.CrossRefADSGoogle Scholar
  10. Brock, T. D.: 1978, Thermophilic Microorganisms and Life at High Temperatures, Springer-Verlag, New York.Google Scholar
  11. Burns, R. G.: 1993, Origin of electronic spectra of minerals in the visible to near-infrared region, in Remote Geochemical Analysis: Elemental and Mineralogical Composition, edited by C.M. Pieters, and P.A.J. Englert, Cambridge University Press.Google Scholar
  12. Carr, M. H.: 1996, Water on Mars, Oxford Univ. Press, New York.Google Scholar
  13. Christensen, P. R., Bandfield, J. L., Hamilton, V. E., Howard, D. A., Lane, M. D., Piatek, J. L., Ruff, S. W., and Stefanov, W. L.: 2000a, 'A thermal emission spectral library of rock forming minerals', J. Geophys. Res. 105, 9735–9738.CrossRefADSGoogle Scholar
  14. Christensen, P. R., Bandfield, J. L., Hamilton, V. E., Ruff, S. W., Kieffer, H. H, Titus, T., Malin, M. C., Morris, R. V., Lane, M. D., Clark, R. N., Jakosky, B. M., Mellon, M. T., Pearl, J. C., Conrath, B. J., Smith, M. D., Clancy, R. T., Kuzmin, R. O., Roush, T., Mehall, G. L., Gorelick, N., Bender, K., Murray, K., Dason, S., Greene, E., Silverman, S. H., and Greenfield,M.: 2001a, 'The Mars Global Surveyor Thermal Emission Spectrometer experiment: Investigation description and surface science results', J. Geophys. Res. 106, 23,823–23,871.ADSGoogle Scholar
  15. Christensen, P. R., Bandfield, J. L., Smith, M. D., Hamilton, V. E., and Clark, R. N.: 2000b, 'Identification of a basaltic component on the Martian surface from Thermal Emission Spectrometer data', J. Geophys. Res. 105, 9609–9622.CrossRefADSGoogle Scholar
  16. Christensen, P. R., Clark, R. N., Kieffer, H. H., Malin, M. C., Pearl, J. C., Bandfield, J. L., Edgett, K. S., Hamilton, V. E., Hoefen, T., Lane, M. D., Morris, R. V., Pearson, R., Roush, T., Ruff, S.W., and Smith, M. D.: 2000c, 'Detection of crystalline hematite mineralization on Mars by the Thermal Emission Spectrometer: Evidence for near-surface water', J. Geophys. Res. 105, 9623–9642.CrossRefADSGoogle Scholar
  17. Christensen, P. R. and Harrison, S. T.: 1993, 'Thermal infrared emission spectroscopy of natural surfaces: Application to desert varnish coatings on rocks', J. Geophys. Res. 98(B11), 19,819–19,834.ADSGoogle Scholar
  18. Christensen, P. R., Malin, M. C., Morris, R. V., Bandfield, J., Lane, M. D., and Edgett, K.: 2000d, 'The distribution of crystalline hematite on Mars from the Thermal Emission Spectrometer: Evidence for liquid water', Lunar and Planet. Sci. XXX, Abstract # 1627.Google Scholar
  19. Christensen, P. R., Malin, M. C., Morris, R. V., Bandfield, J. L., and Lane, M. D.: 2001b, 'Martian hematite mineral deposits: Remnants of water-driven processes on early Mars, J. Geophys. Res. 106, 23,873–23,885.ADSGoogle Scholar
  20. Christensen, P. R. and Zurek, R. W.: '1984, Martian north polar hazes and surface ice: Results from the Viking survey/completion mission', J. Geophys. Res. 89, 4587–4596.ADSGoogle Scholar
  21. Clark, R. N., Swayze, G. A., Singer, R. B., and Pollack, J. B.: 1990, 'High-resolution reflectance spectra of Mars in the 2.3 µm region: Evidence for the mineral scapolite', J. Geophys. Res. 95, 14,463–14,480.ADSGoogle Scholar
  22. Conel, J. E.: 1969, 'Infrared emissivities of silicates: Experimental results and a cloudy atmosphere model of spectral emission from condensed particulate mediums', J. Geophys. Res. 74, 1614–1634.ADSGoogle Scholar
  23. Conrath, B., Curran, R., Hanel, R., Kunde, V., Maguire, W., Pearl, J., Pirraglia, J., and Walker, J.: 1973, 'Atmospheric and surface properties of Mars obtained by infrared spectroscopy on Mariner 9', J. Geophys. Res. 78, 4267–4278.ADSGoogle Scholar
  24. Conrath, B. J., Pearl, J. C., Smith, M. D., Maguire, W. C., Christensen, P. R., Dason, S., and Kaelberer, M.S.: 2000, 'Mars Global Surveyor Thermal Emission Spectrometer (TES) Observations: Atmospheric temperatures during aerobraking and science phasing', J. Geophys. Res. 105, 9509–9520.CrossRefADSGoogle Scholar
  25. Craddock, R. A. and Maxwell, T. A.: 1993, 'Geomorphic evolution of the Martian highlands through ancient fluvial processes', J. Geophys. Res. 98, 3453–3468.ADSGoogle Scholar
  26. Craddock, R. A., Maxwell, T. A., and Howard, A. D.: 1997, 'Crater morphometry and modification in the Sinus Sabaeus and Margaritifer Sinus regions of Mars', J. Geophys. Res. 102, 13,321–13,340.ADSGoogle Scholar
  27. Crisp, J., Kahle, A. B., and Abbott, E. A.: 1990, 'Thermal infrared spectral character of Hawaiian basaltic glasses', J. Geophys. Res. 95, 21657–21669.ADSGoogle Scholar
  28. Davies, D. W., Farmer, C. B., and LaPorte, D. D.: 1977, 'Behavior of volatiles in Mars' polar areas: A model incorporating new experimental data', J. Geophys. Res. 82, 3815–3822.ADSGoogle Scholar
  29. Edgett, K. S.: 1995, 'To Mars by way of the schoolhouse', Mercury 24, 28–31.ADSGoogle Scholar
  30. Edgett, K. S. and Christensen, P. R.: 1995, 'Multispectral thermal infrared observations of sediments in volcaniclastic aeolian dune fields: Implications for the Mars Global Surveyor Thermal Emission Spectrometer', Lunar Planet. Sci. XXVI, 355–356.ADSGoogle Scholar
  31. Edgett, K. S., Christensen, P. R., Dieck, P. A., Kingsbury, A. R., Kuhlman, S. D., Roberts, J. L., Wakefield, D. A., Rice, J. W. J., and Dodds, J.: 1997, 'K-12 and public outreach for NASA flight projects: Five years (1992-1997) of the Arizona Mars K-12 Education Program', Lunar Planet. Sci. 28, 323–324.ADSGoogle Scholar
  32. Edgett, K. S. and Rice, J. W. J.: 1995, 'Summary of education and public outreach in Mars Pathfinder Landing Site Workshop II', LPI Tech. Rept. 95-01 (Part 2), 17–29.Google Scholar
  33. Edgett, S. K. and Christensen, P. R.: 1996, 'K-12 education outreach program initiated by a university research team for the Mars Global Surveyor Thermal Emission Spectrometer project', J. Geoscience Education 44, 183–188.Google Scholar
  34. Ellis, A. J. and McMahon, W. A. J.: 1977, Chemistry and Geothermal Systems, Academic Press, New York.Google Scholar
  35. Working-Group: 1995, An Exobiological Strategy for Mars Exploration, NASA Headquarters.Google Scholar
  36. Farmer, V. C.: 1974, The Infrared Spectra of Minerals, 539 pp., Mineralogical Society, London.Google Scholar
  37. Feely, K. C. and Christensen, P. R.: 1999, 'Quantitative compositional analysis using thermal emission spectroscopy: Application to igneous and metamorphic rocks', J. Geophys. Res. 104, 24,195–24,210.CrossRefADSGoogle Scholar
  38. Gaffey, S. J.: 1984, Spectral reflectance of carbonate minerals and rocks in the visible and infrared (0.35 to 2.55 µm) and its applications in carbonate petrology, Ph.D. thesis, University of Hawaii.Google Scholar
  39. Gillespie, A. R., Kahle, A. B., and Palluconi, F. D.: 1984, 'Mapping alluvial fans in Death Valley, CA, using multichannel thermal infrared images', Geophys. Res. Ltr. 11(11), 1153–1156.ADSGoogle Scholar
  40. Golombek, M. P., Cook, R. A., Moore, H. J., and Parker, T. J.: 1997, 'Selection of the Mars Pathfinder landing site', J. Geophys. Res. 102, 3967–3988.CrossRefADSGoogle Scholar
  41. Greeley, R., Lancaster, N., Lee, S., and Thomas, P.: 1992, Martian Eolian Processes, Sediments, and Features, in Mars, edited by H. Kieffer, B. Jakosky, C. Snyder, and M. Matthews, Univ. of Arizona Press, Tucson.Google Scholar
  42. Haberle, R. M. and Jakosky, B.M.: 1990, 'Sublimation and transport of water from the north residual polar cap on Mars', J. Geophys. Res. 95(B2), 1423–1437.ADSGoogle Scholar
  43. Hamilton, V. E.: 1999, 'Linear deconvolution of mafic igneous rock spectra and implications for interpretation of TES data', Lunar and Planet. Sci. XXX, CD-ROM, Abstract 1825.Google Scholar
  44. Hamilton, V. E.: 2000, 'Thermal infrared emission spectroscopy of the pyroxene mineral series', J. Geophys. Res. 105, 9701–9716.CrossRefADSGoogle Scholar
  45. Hamilton, V. E. and Christensen, P. R.: 2000, 'Determination of modal mineralogy of mafic and ultramafic igneous rocks using thermal emission spectroscopy', J. Geophys. Res. 105, 9717–9734.CrossRefADSGoogle Scholar
  46. Hamilton, V. E., Wyatt, M. B., McSween, H. Y., and Christensen, P. R.: 2001, 'Analysis of terrestrial and martian volcanic compositions using thermal emission spectroscopy: II. Application to martian surface spectra from MGS TES', J. Geophys. Res. 106, 14,733–14,747.CrossRefADSGoogle Scholar
  47. Hanel, R. A., Conrath, B. J., Hovis, W. A., Kunde, V. G., Lowman, P. D., Pearl, J. C., Prabhakara, C., Schlachman, B., and Levin, G. V.: 1972, 'Infrared spectroscopy experiment on the Mariner 9 mission: Preliminary results', Science 175, 305–308.ADSGoogle Scholar
  48. Hapke, B.: 1981, 'Bidirectional reflectance spectroscopy I. Theory', J. Geophys. Res. 86, 3039–3054.ADSCrossRefGoogle Scholar
  49. Hapke, B.: 1993, Combined Theory of Reflectance and Emittance Spectroscopy, in Remote Geochemical Analysis: Elemental and Mineralogical Composition, edited by C. M. Pieters and P. A. J. Englert, Cambridge University Press, Cambridge.Google Scholar
  50. Henderson, B. G., Jakosky, B., and Randall, C. E.: 1992, 'A Monte Carlo Model of Polarized Thermal Emission from Particulate Planetary Surfaces', Icarus 99, 51–62.CrossRefADSGoogle Scholar
  51. Herkenhoff, K. E., and Murray, B. C.: 1990a, 'Color and albedo of the south polar layered deposits on Mars', J. Geophys. Res. 95, 14,511–14,529.ADSGoogle Scholar
  52. Herkenhoff, K. E. and Murray, B. C.: 1990b, 'High-resolution topography and albedo of the south polar layered deposits on Mars', J. Geophys. Res. 95, 14,511–14,529.ADSGoogle Scholar
  53. Hook, S. J., Karlstrom, K. E., Miller, C. F., and McCaffrey, K. J. W.: 1994, 'Mapping the Piute Mountains, California, with thermal infrared multispectral scanner (TIMS) images', J. Geophys. Res. 99, 15,605–15,622.CrossRefADSGoogle Scholar
  54. Hunt, G. R. and Logan, L. M.: 1972, 'Variation of single particle mid-infrared emission spectrum with particle size', Appl. Opt. 11, 142–147.ADSGoogle Scholar
  55. Hunt, G. R. and Salisbury, J. W.: 1970, 'Visible and near-infrared spectra of minerals and rocks: I. Silicate minerals', Mod. Geol. 1, 283–300.Google Scholar
  56. Hunt, G. R., and Salisbury, J. W.: 1976, 'Mid-infrared spectral behavior of metamorphic rocks', Environ. Res. Paper, 543-AFCRL-TR-76-0003, 67.Google Scholar
  57. Hunt, G. R. and Vincent, R. K.: 1968, 'The behavior of spectral features in the infrared emission from particulate surfaces of various grain sizes', J. Geophys. Res. 73, 6039–6046.ADSGoogle Scholar
  58. Jakosky, B. M.: 1998, The Search for Life on Other Planets, 336 pp., Cambridge Univ. Press.Google Scholar
  59. Jakosky, B. M., Mellon, M. T., Kieffer, H. H., Christensen, P. R., Varnes, E. S., and Lee, S.W.: 2000, 'The thermal inertia of Mars from the Mars Global Surveyor Thermal Emission Spectrometer', J. Geophys. Res. 105, 9643–9652.CrossRefADSGoogle Scholar
  60. Jakosky, B. M. and Shock, E. L.: 1998, 'The biological potential of Mars, the early Earth, and Europa', J. Geophys. Res. 103, 19359–19364.CrossRefADSGoogle Scholar
  61. James, P. B. and North, G. R.: 1982, 'The seasonal CO2 cycle on Mars: An application of an energy balance climate model', J. Geophys. Res. 87, 10,271–10,284.ADSGoogle Scholar
  62. Johnson, J. R., Christensen, P. R., and Lucey, P. G.: in press, 'Dust coatings on basalt and implications for thermal infrared spectroscopy of Mars', J. Geophys. Res. Google Scholar
  63. Kahle, A., Palluconi, F. D., and Christensen, P. R.: 1993, Thermal emission spectroscopy: Application to Earth and Mars, in Remote Geochemical Analysis: Elemental and Mineralogical Composition, edited by C.M. Pieters, and P.A.J. Englert, pp. 99–120, Cambridge University Press, Cambridge.Google Scholar
  64. Kahle, A. B., Madura, D. P., and Soha, J. M.: 1980, 'Middle infrared multispectral aircraft scanner data: Analysis for geological applications', Appl. Optics 19, 2279–2290.ADSGoogle Scholar
  65. Kieffer, H. H.: 1979, 'Mars south polar spring and summer temperatures: A residual CO2 frost', J. Geophys. Res. 84, 8263–8289.ADSGoogle Scholar
  66. Kieffer, H. H.: 1990, 'H2O grain size and the amount of dust in Mars' residual north polar cap', J. Geophys. Res. 95, 1481–1494.ADSGoogle Scholar
  67. Kieffer, H. H., Martin, T. Z., Peterfreund, A. R., Jakosky, B. M., Miner, E. D., and Palluconi, F. D.: 1977, 'Thermal and albedo mapping of Mars during the Viking primary mission', J. Geophys. Res. 82, 4249–4292.ADSGoogle Scholar
  68. Kieffer, H. H., Titus, T., Mullins, K., and Christensen, P. R.: 2000, 'Mars south polar cap as observed by the Mars Global Surveyor Thermal Emission Spectrometer', J. Geophys. Res. 105, 9653–9700.CrossRefADSGoogle Scholar
  69. Kieffer, H. H. and Zent, A. P.: 1992, 'Quasi-periodic climatic change on Mars, in Mars, edited by H. H. Kieffer, B. M. Jakosky, C. W. Snyder, and M. S. Matthews, Univ. of Arizona Press, Tucson.Google Scholar
  70. Komatsu, G. and Baker, V. R.: 1997, 'Paleohydrology and flood geomorphology of Ares Vallis', J. Geophys. Res. 102, 4151–4160.CrossRefADSGoogle Scholar
  71. Lane, M. D. and Christensen, P. R.: 1997, 'Thermal infrared emission spectroscopy of anhydrous carbonates', J. Geophys. Res. 102, 25,581–25,592.CrossRefADSGoogle Scholar
  72. Lazerev, A. N.: 1972, Vibrational spectra and structure of silicates, 302 pp., Consultants Bureau, New York.Google Scholar
  73. Lyon, R. J. P.: 1962, Evaluation of infrared spectroscopy for compositional analysis of lunar and planetary soils, in Stanford Research Institute Final Report Contract NASr, Stanford Research Institute.Google Scholar
  74. Malin, M. C. and Carr, M. H.: 1999, 'Groundwater formation of martian valleys', Nature 397, 589–591.CrossRefADSGoogle Scholar
  75. Malin, M. C. and Edgett, K. S.: 2000, 'Sedimentary rocks of early Mars', Science 290, 1927–1937.CrossRefADSGoogle Scholar
  76. Malin, M. C. and Edgett, K. S.: 2001, 'Mars Global Surveyor Mars Orbiter Camera: Interplanetary cruise through primary mission', J. Geophys. Res. 106, 23,429–23,570.ADSGoogle Scholar
  77. Martin, T. Z.: 1986, 'Thermal infrared opacity of the mars atmosphere', Icarus 66, 2–21.CrossRefADSGoogle Scholar
  78. McCord, T. B., Clark, R. N., and Singer, R. B.: 1982, 'Mars: Near-infrared reflectance spectra of surface regions and compositional implications', J. Geophys. Res. 87, 3021–3032.ADSGoogle Scholar
  79. McKay, D. S., E. K. G. Jr., Thomas-Keprta, K. L., Vali, H., Romanek, C. S., Clemett, S. J., Chillier, X. D. F., Maechling, C. R., and Zare, R. N.: 1996, 'Search for past life on Mars: Possible relic biogenic activity in martian meteorite ALH84001', Science 273, 924–930.ADSGoogle Scholar
  80. McSween, H. Y., Jr.: 1994, 'What have we learned about Mars from SNC meteorites', Meteoritics 29, 757–779.ADSGoogle Scholar
  81. Mellon, M. T., Jakosky, B. M., Kieffer, H. H., and Christensen, P. R.: 2000, 'High resolution thermal inertia mapping from the Mars Global Surveyor Thermal Emission Spectrometer', Icarus 148, 437–455.CrossRefADSGoogle Scholar
  82. Moersch, J. E. and Christensen, P. R.: 1995, 'Thermal emission from particulate surfaces: A comparison of scattering models with measured spectra', J. Geophys. Res. 100, 7,465–7,477.CrossRefADSGoogle Scholar
  83. Morris, R. V., Gooding, J. L., Lauer, J. H. V., and Singer, R. B.: 1990, 'Origins of Marslike spectral and magnetic properties of a Hawaiian palagonitic soil', J. Geophys. Res. 95, 14,427–14,435.ADSGoogle Scholar
  84. Mustard, J. F., Erard, S., Bibring, J.-P., Head, J. W., Hurtrez, S., Langevin, Y., Pieters, C. M., and Sotin, C. J.: 1993, 'The surface of Syrtis Major: Composition of the volcanic substrate and mixing with altered dust and soil', J. Geophys. Res. 98, 3387–3400.ADSGoogle Scholar
  85. Mustard, J. F. and Hays, J. E.: 1997, 'Effects of hyperfine particles on reflectance spectra from 0.3 to 25 µm', Icarus (125), 145–163.CrossRefADSGoogle Scholar
  86. Mustard, J. F. and Sunshine, J. M.: 1995, 'Seeing through the dust: Martian crustal heterogeneity and links to the SNC meteorites', Science 267, 1623–1626.ADSGoogle Scholar
  87. Nash, D. B. and Salisbury, J. W.: 1991, 'Infrared reflectance spectra of plagioclase feldspars', Geophys. Res. Lett. 18, 1151–1154.ADSGoogle Scholar
  88. Paige, D. A. and Ingersoll, A. P.: 1985, 'Annual heat balance of martian polar caps: Viking observations', Science 228, 1160–1168.ADSGoogle Scholar
  89. Palluconi, F. D. and Meeks, G. R.: 1985, Thermal infrared multispectral scanner (TIMS): An investigator's guide to TIMS data, Jet Propulsion Laboratory.Google Scholar
  90. Pearl, J. C., Smith, M. D., Conrath, B. J., Bandfield, J. L., and Christensen, P. R.: 2001, 'Observations of water-ice clouds by the Mars Global Surveyor Thermal Emission Spectrometer experiment: The first martian year', J. Geophys. Res. 12,325–12,338.Google Scholar
  91. Pentecost, A.: 1996, High Temperature Ecosystems and their Chemical Interactions with their Environment, in Evolution of Hydrothermal Ecosystems on Earth (and Mars?), edited by G. R. Bock, and J. A. Goode, pp. 99–111, John Wiley and Sons, Chichester.Google Scholar
  92. Pimentel, G. C., Forney, P. B., and Herr, K. C.: 1974, 'Evidence about hydrate and solid water in the martian surface from the 1969 Mariner infrared spectrometer', J. Geophys. Res. 79 (No. 11), 1623–1634.ADSGoogle Scholar
  93. Ramsey, M. S.: 1996, Quantitative Analysis of Geologic Surfaces: A Deconvolution Algorithm for Midinfrared Remote Sensing Data, Ph.D Dissertation thesis, Arizona State University.Google Scholar
  94. Ramsey, M. S. and Christensen, P. R.: 1992, The linear 'un-mixing' of laboratory thermal infrared spectra: Implications for the Thermal Emission Spectrometer (TES) experiment, Mars Observer, Lunar & Planet. Sci. XXIII, 1127–1128.ADSGoogle Scholar
  95. Ramsey, M. S. and Christensen, P. R.: 1998, 'Mineral abundance determination: Quantitative deconvolution of thermal emission spectra', J. Geophys. Res. 103, 577–596.CrossRefADSGoogle Scholar
  96. Ramsey, M. S., Christensen, P. R., Lancaster, N., and Howard, D. A.: 1999, 'Identification of sand sources and transport pathways at Kelso Dunes, California using thermal infrared remote sensing', Geol. Soc. Am. Bull. 111, 636–662.CrossRefGoogle Scholar
  97. Roush, T. L., Blaney, D. L., and Singer, R. B.: 1993, The surface composition of Mars as inferred from spectroscopic observations, in Remote Geochemical Analysis: Elemental and Mineralogical Composition, edited by C. M. Pieters, and P. A. J. Englert, Cambridge University Press.Google Scholar
  98. Ruff, S. W. and Christensen, P. R.: 2002, 'Bright and dark regions on Mars: Particle size and mineralogical characteristics based on Thermal Emission Spectrometer data', J. Geophys. Res., in press.Google Scholar
  99. Salisbury, J. W.: 1993, Mid-infrared spectroscopy: Laboratory data, in Remote Geochemical Analysis: Elemental and Mineralogical Composition, edited by C. Pieters, and P. Englert, pp. Ch. 4, Cambridge University Press, Cambridge.Google Scholar
  100. Salisbury, J. W., D'Aria, D. M., and Jarosewich, E.: 1991, 'Mid-infrared (2.5-13.5 um) reflectance spectra of powdered stony meteorites', Icarus 92, 280–297.CrossRefADSGoogle Scholar
  101. Salisbury, J. W. and Eastes, J. W.: 1985, 'The effect of particle size and porosity on spectral contrast in the mid-infrared', Icarus 64, 586–588.CrossRefADSGoogle Scholar
  102. Salisbury, J. W., Hapke, B., and Eastes, J. W.: 1987a, 'Usefulness of weak bands in midinfrared remote sensing of particulate planetary surfaces', J. Geophys. Res. 92, 702–710.ADSGoogle Scholar
  103. Salisbury, J. W. and Wald, A.: 1992, 'The role of volume scattering in reducing spectral contrast of reststrahlen bands in spectra of powdered minerals', Icarus 96, 121–128.CrossRefADSGoogle Scholar
  104. Salisbury, J. W., Wald, A., and D'Aria, D. M.: 1994, 'Thermal-infrared remote sensing and Kirchhoff's law 1. Laboratory measurements', J. Geophys. Res. 99, 11897–11911.CrossRefADSGoogle Scholar
  105. Salisbury, J. W. and Walter, L. S.: 1989, 'Thermal infrared (2.5-13.5 µm) spectroscopic remote sensing of igneous rock types on particulate planetary surfaces', J. Geophys. Res. 94(No. B7), 9192–9202.ADSGoogle Scholar
  106. Salisbury, J. W., Walter, L. S., and Vergo, N.: 1987b, Mid-infrared (2.1-25 µm) spectra of minerals: First Edition, in U.S.G.S., Open File Report, pp. 87–263, U. S. Geological Survey Open File Report.Google Scholar
  107. Selivanov, A. S., Naraeva, M. K., Panfilov, A. S., Gektin, Y. M., Kharlamov, V. D., Romanov, A. V., Fomin, D. A., and Miroshnichenko, Y. Y.: 1989, 'Thermal imaging of the surface of Mars', Nature 341, 593–595.CrossRefADSGoogle Scholar
  108. Shock, E. L.: 1997, 'High temperature life without photosynthesis as a model for Mars', J. Geophys. Res. Google Scholar
  109. Shoemaker, E. M.: 1963, Impact mechanics at Meteor Crater, Arizona, in The Moon, Meteorites, and Comets, edited by B. M. Middlehurst, and G. P. Kuiper, pp. 301–336, Univ. of Chicago Press, Chicago.Google Scholar
  110. Silverman, S., Bates, D., Schueler, C., O'Donnell, B., Christensen, P., Mehall, G., Tourville, T. and Cannon, G.: 1999, Miniature Thermal Emission Spectrometer for the Mars 2001 Lander, Proceedings of the IEEE.Google Scholar
  111. Singer, R. B.: 1982, 'Spectral evidence for the mineralogy of high-albedo soils and dust on Mars', J. Geophys. Res. 87, 10,159–10,168.ADSGoogle Scholar
  112. Smith, M. D., Bandfield, J. L., and Christensen, P. R.: 2000, 'Separation of atmospheric and surface spectral features in Mars Global Surveyor Thermal Emission Spectrometer (TES) spectra: Models and atmospheric properties', J. Geophys. Res. 105, 9589–9608.CrossRefADSGoogle Scholar
  113. Smith, M. D., Conrath, B. J., Pearl, J. C., and Christensen, P. R.: 2002, 'Thermal Emission Spectrometer observations of martian planet-encircling dust storm 2001A', Icarus 157, 259–263.CrossRefADSGoogle Scholar
  114. Smith, M. D., Pearl, J. C., Conrath, B. J., and Christensen, P. R.: 2001a, 'Thermal Emission Spectrometer results: Mars atmospheric thermal structure and aerosol distribution', J. Geophys. Res. 106, 23929–23945.CrossRefADSGoogle Scholar
  115. Smith, M. D., Pearl, J. C., Conrath, B. J., and Christensen, P. R.: 2001b, 'One Martian year of atmospheric observations by the Thermal Emission Spectrometer', Geophys. Res. Letters 28, 4263–4266.CrossRefADSGoogle Scholar
  116. Smith, M. D., Pearl, J. C., Conrath, B. J., and Christensen, P. R.: 2001c, 'Thermal Emission Spectrometer results: Atmospheric thermal structure and aerosol distribution', J. Geophys. Res. 106, 23,929–23,945.ADSGoogle Scholar
  117. Stevens, T. O. and McKinley, J. P.: 1995, 'Lithoautotrophic microbial ecosystems in deep basalt aquifers', Science 270, 450–454.ADSGoogle Scholar
  118. Tamppari, L. K., Zurek, R. W., and Paige, D. A.: 2000, 'Viking era water ice clouds', J. Geophys. Res. 105, 4087–4107.CrossRefADSGoogle Scholar
  119. Tanaka, K. L.: 1997, 'Sedimentary history and mass flow structures of Chryse and Acidalia Planitiae', Mars, J. Geophys. Res. 102, 4131–4149.CrossRefADSGoogle Scholar
  120. Tanaka, K. L. and Leonard, G. J.: 1995, 'Geology and landscape evolution of the Hellas region of Mars', J. Geophys. Res. 100, 5407–5432.CrossRefADSGoogle Scholar
  121. Thomas, P. and Gierasch, P. J.: 1995, 'Polar margin dunes and winds on Mars', J. Geophys. Res. 100, 5379–5406.ADSGoogle Scholar
  122. Thomas, P. C., Malin, M. C., and Edgett, K. S.: 2000, 'North-south geological differences between the residual polar caps on Mars', Nature 404, 161–164.CrossRefADSGoogle Scholar
  123. Thomas, P. C., Squyres, S., Herkenhoff, K., Howard, A., and Murray, B.: 1992, Polar deposits of Mars in Mars, in Mars, edited by H. Kieffer, B. Jakosky, C. Snyder, and M. Matthews, pp. 767–795, Univ. Arizona Press, Tucson.Google Scholar
  124. Thomas, P. C. and Weitz, C.: 1989, 'Sand dune materials and polar layered deposits on Mars', Icarus 81, 185–215.CrossRefADSGoogle Scholar
  125. Thomson, J. L. and Salisbury, J. W.: 1993, 'The mid-infrared reflectance of mineral mixtures (7-14 µm)', Remote Sensing of Environment 45, 1–13.CrossRefADSGoogle Scholar
  126. Titus, T. N., Kieffer, H. H., Mullins, K. F., and Christensen, P. R.: 2001, 'TES Pre-mapping data: Slab ice and snow flurries in the Martian north polar night', J. Geophys. Res. 106, 23,181–23,196.CrossRefADSGoogle Scholar
  127. Van der Marel, H. W. and Beeutelspacher, H.: 1976, Atlas of infrared spectroscopy of clay minerals and their admixtures, 396pp., Elsevier Scientific Publishing Co., Amsterdam.Google Scholar
  128. Vincent, R. K. and Hunt, G. R.: 1968, 'Infrared reflectance from mat surfaces', Appl. Opt. 7, 53–59.ADSCrossRefGoogle Scholar
  129. Vincent, R. K. and Thompson, F.: 1972, 'Spectral compositional imaging of silicate rocks', J. Geophys. Res. 17 (No. 14), 2465–2472.ADSGoogle Scholar
  130. Wald, A. E. and Salisbury, J.W.: 1995, 'Thermal infrared emissivity of powdered quartz', J. Geophys. Res. 100, 24665–24675.CrossRefADSGoogle Scholar
  131. Walter, M. R. and Des Marais, D. J.: 1993, 'Preservation of biological information in thermal spring deposits: Developing a strategy for the search for fossil life on Mars', Icarus 101, 129–143.CrossRefADSGoogle Scholar
  132. White, D. E., Hutchinson, R. A., and Keith, T. E. C.: 1988, The Geology and Remarkable Thermal Acitivty of Norris Geyser Basin, Yellowstone National Park, U.S. Geol. Survey Prof. Paper 1456.Google Scholar
  133. Wilson, E. B., Jr., Decius, J. C., and Cross, P. C.: 1955, Molecular Vibrations: The Theory of Infrared and Raman Vibrational Spectra, McGraw-Hill.Google Scholar
  134. Wyatt, M. B., Hamilton, V. E., McSween, J. H. Y., Christensen, P. R., and Taylor, L. A.: 2001, 'Analysis of terrestrial and martian volcanic compositions using thermal emission spectroscopy: I. Determination of mineralogy, chemistry, and classification strategies', J. Geophys. Res. 106, 14,711–14,732.CrossRefADSGoogle Scholar
  135. Young, J.: 1999a, FM1 Absolute radiometric calibration reflectance region: uncertainty estimate, Raytheon Santa Barbara Remote Sensing, Santa Barbara.Google Scholar
  136. Young, J.: 1999b, FM1 Absolute radiometric calibration thermal region: uncertainty estimate, Raytheon Santa Barbara Remote Sensing, Santa Barbara.Google Scholar
  137. Young, J.: 1999c, Summary of the Blackbody Calibration Source (BCS) and Space View Source (SVS) refurbishment and calibration process, Raytheon Santa Barbara Remote Sensing, Santa Barbara.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Philip R. Christensen
    • 1
  • Bruce M. Jakosky
    • 2
  • Hugh H. Kieffer
    • 3
  • Michael C. Malin
    • 4
  • Harry Y. McSweenJr.
    • 5
  • Kenneth Nealson
    • 6
  • Greg L. Mehall
    • 7
  • Steven H. Silverman
    • 8
  • Steven Ferry
    • 8
  • Michael Caplinger
    • 4
  • Michael Ravine
    • 4
  1. 1.Department of Geological SciencesArizona State UniversityTempeU.S.A
  2. 2.Laboratory of Atmospheric and space Physics and Department of Geological SciencesUniversity of ColoradoBoulderU.S.A
  3. 3.U.S. Geological SurveyFlagstaffU.S.A
  4. 4.Malin Space Science SystemsSan DiegoU.S.A
  5. 5.Department of Geological SciencesUniversity of TennesseeKnoxvilleU.S.A
  6. 6.Jet Propulsion LaboratoryPasadenaU.S.A
  7. 7.Department of Geological SciencesArizona State UniversityTempeU.S.A
  8. 8.Raytheon Santa Barbara Remote SensingGoletaU.S.A

Personalised recommendations