Skip to main content

The Flux of Lunar Meteorites onto the Earth

Abstract

Numerous new finds of lunar meteorites in Oman allow detailed constraints to be obtained on the intensity of the transfer of lunar matter to the Earth. Our estimates show that the annual flux of lunar meteorites in the mass interval from 10 to 1000 g to the entire Earth's surface should not be less than several tenths of a kilogram and is more likely equal to tens or even a few hundred kilograms, i.e., a few percent of the total meteorite flux. This corresponds to several hundred or few thousand falls of lunar meteorites on all of Earth per year. Even small impact events, which produce smaller than craters on the Moon smaller than 10 km in diameter, are capable of transferring lunar matter to the Earth. In this case, the Earth may capture between 10 to 100% of the mass of high-velocity crater ejecta leaving the Moon. Our estimates for the lunar flux imply rather optimistic prospects for the discovery of new lunar meteorites and, consequently, for the analyses of the lunar crust composition. However, the meteorite-driven flux of lunar matter did not play any significant role in the formation of the material composition of the Earth's crust, even during the stage of intense meteorite bombardment.

This is a preview of subscription content, access via your institution.

REFERENCES

  1. Arnold, J.R., The Origin of Meteorites as Small Bodies. II. The Model,Astrophys. J., 1965, vol. 141, pp. 1536-1547.

    Google Scholar 

  2. Demidova, S.I., Nazarov, M.A., Anand, M.,et al., Clast Population of Lunar Regolith Breccia Dhofar 287B,Lunar Planet. Sci. Conf. XXXIII, 2002, Abstract #1290.

  3. Demidova, S.I., Nazarov, M.A., and Taylor, L.A., Dhofar 304, 305, 306, and 307: New Lunar Highland Meteorites,Lunar Planet. Sci. Conf. XXXIV, 2003, Abstract #1285.

  4. Eremeeva, A.I.,Rozhdenie nauchnoi meteoritiki(Origin of Scientific Meteoritics), Moscow: Nauka, 1982.

    Google Scholar 

  5. Gault, D.E., The Terrestrial Accretion of Lunar Material,Proc. Lunar Planet. Sci. Conf. XIV, 1983, pp. 243-244.

  6. Grossman, J.N., The Meteoritical Bulletin no. 84,Meteorit. Planet. Sci., 2000, vol. 35, pp. A199-A225.

    Google Scholar 

  7. Grossman, J.N. and Zipfel, J., The Meteoritical Bulletin no. 85,Meteorit. Planet. Sci., 2001, vol. 36, pp. A293-A322.

    Google Scholar 

  8. Halliday, I., Blackwell, A.T., and Griffin, A.A., The Flux of Meteorites on the Earth's Surface,Meteoritics,1989, vol. 24, pp. 173-178.

    Google Scholar 

  9. Harvey, R.P. and Cassidy, W.A., A Statistical Comparison of Antarctic Finds and Modern Falls: Mass Frequency Distributions and Relative Abundance by Type,Meteoritics, 1989, vol. 24, pp. 9-14.

    Google Scholar 

  10. Hughes, D.W., Earth's Cratering Rate,Nature, 1979, vol. 281,no. 5726, p. 11.

    Google Scholar 

  11. Kyte, F.T. and Wasson, J.T., Accretion Rate of Extraterrestrial Matter: Iridium Deposited 33 to 67 Million Years Ago,Science, 1986, vol. 232, pp. 1225-1229.

    Google Scholar 

  12. Lindstrom, M.M., Schwarz, C., Score, R.,et al., MacAlpine Hills 88104 and 88105 Lunar Highland Meteorites: General Description and Concortium Overview,Geochim. Cosmochim. Acta, 1991, vol. 55, pp. 2999-3008.

    Google Scholar 

  13. Melosh, H.J., Impact Cratering: a Geologic Process,Oxford Monographs on Geology and Geophysics, No. 11, New York: Clarendon, 1989.

    Google Scholar 

  14. Nazarov, M.A., Demidova, S.I., Patchen, A.,et al., Dhofar 301, 302 and 303: Three New Lunar Highland Meteorites from Oman,Lunar Planet. Sci. Conf. XXXIII, 2002, Abstract #1293.

  15. Nazarov, M.A., Demidova, S.I., and Taylor, L.A., Trace Element Chemistry of Lunar Highland Meteorites from Oman,Lunar Planet. Sci. Conf. XXXIV, 2003, Abstract #1636.

  16. Nishiizumi, K., Caffee, M.W., Jull, A.J.T.,et al., Exposure History of Lunar Meteorites Queen Alexandra Range 93069 and 94269,Meteorit. Planet. Sci., 1996, vol. 31, pp. 893-896.

    Google Scholar 

  17. Nishiizumi, K. and Caffee, M.W., Exposure histories of lunar meteorites Dhofar 025, 026, and Northwest Africa 482,Meteorit. and Planet. Sci., 2001, vol. 36, p. A148.

    Google Scholar 

  18. Nishiizumi, K., Okazaki, R., Park, J.,et al., Exposure and Terrestrial Histories of Dhofar 019 Martian Meteorite,Lunar Planet. Sci. Conf. XXXIII, 2002, Abstract #1366.

  19. O'Keefe, J.D. and Ahrens, T.J., Meteorite Impact Ejecta: Dependence of Mass and Energy Lost on Planetary Escape Velocity,Science, 1977, vol. 198, pp. 1249-1251.

    Google Scholar 

  20. Ronov, A.B.,Osadochnaya obolochka Zemli (kolichestvennye zakonomernosti stroeniya, sostava i evolyutsii)(The Earth's Sedimentary Layer: Quantitative Regularities of Structure, Composition, and Evolution), Moscow: Nauka, 1980.

    Google Scholar 

  21. Russel, S.S., Zipfel, J., Grossman, J.N.,et al., The Meteoritical Bulletin, no. 86,Meteorit. Planet. Sci., 2002, vol. 37, pp. 157-184.

    Google Scholar 

  22. Russel, S.S., Zipfel, J., Folco, L.,et al., The Meteoritical Bulletin, no. 87,Meteorit. Planet. Sci., 2003, vol. 38 (in press).

  23. Score, R. and Lindstrom, M.M., Guide to the U.S. Collection of Antarctic Meteorites 1976–1988,Antarctic Meteorite Newsletter, 1990, vol. 13.

  24. Semenova, A.S., Nazarov, M.A., and Guseva, E.V., Lunar Meteorite MAC 88105: Petrology of Igneous Rock Clasts,Lunar Planet. Sci. Conf. XXIII, 1992, pp. 1265-1266.

  25. Semenova A.S., Nazarov M.A., and Kononkova N.N., Petrology of lunar meteorites MAC 88105 and EET 87521,Petrologiya, 1993, vol. 1,no. 6, pp. 624-633.

    Google Scholar 

  26. Shukolyukov, Yu.A., Nazarov, M.A., Pätsch, M.,et al., Noble Gases in Three Meteorites from Oman,Lunar and Planetary Sci. Conf. XXXII, 2001, Abstract #1502.

  27. Taylor, L.A., Nazarov, M.A., Cohen, B.A.,et al., Bulk Chemistry and Oxygen Isotopic Composition of Lunar Meteorites Dhofar 025 and Dhofar 026,Lunar Planet. Sci. Conf. XXXII, 2001, Abstract #1985.

  28. Taylor, L.A., Nazarov, M.A., Demidova, S.I.,et al., Dhofar 287: A new mare lunar basalt from Oman,Meteorit. Planet. Sci., 2001, vol. 36, p. A204.

    Google Scholar 

  29. Thalmann, Ch., Eugster, O., Herzog, G.F.,et al., History of Lunar Meteorites Queen Alexandra Range 93069, Asuka 881757, and Yamato 793169 Based on Noble Gas Isotopic Abundances, Radionuclide Concentrations, and Chemical Composition,Meteorit. Planet. Sci.,1996, vol. 31, pp. 857-868.

    Google Scholar 

  30. Tsvetkov, V.I. and Goritskii, Yu.A., Probabilistic Estimation of Dispersion Assymetry for Meteorite Showers,Astron. Vestn., 1973, vol. 7,no. 3, pp. 160-166.

    Google Scholar 

  31. Vogt, S., Fink, D., Klein, J.,et al., Exposure Histories of the Lunar Meteorites: MAC 88104, MAC 88105, Y 791197, and Y 86032,Geochim. Cosmochim. Acta, 1991, vol. 55, pp. 3157-3165.

    Google Scholar 

  32. Warren, P.H., Lunar and Martian Meteorite Delivery Services,Icarus, 1994, vol. 111, pp. 338-363.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nazarov, M.A., Badyukov, D.D., Lorents, K.A. et al. The Flux of Lunar Meteorites onto the Earth. Solar System Research 38, 49–58 (2004). https://doi.org/10.1023/B:SOLS.0000015155.90844.ae

Download citation

Keywords

  • Oman
  • Material Composition
  • Small Impact
  • Impact Event
  • Annual Flux