Skip to main content
Log in

Two Approaches for Determining Extreme Years of Global Atmospheric Temperature

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

Two different groups of indices have been defined to analyze the evolution of global temperature between 1958 and 1998. All the indices were evaluated at three different levels (850, 500 and 200 hPa), and averaged indices were calculated using the whole globe, continental areas and oceanic areas. The first group of indices analyzes the area of the world covered with higher and lower than normal temperatures, detecting a slight cooling in the 200 hPa level. The second group of indices studies the annual frequency of extreme events, and again, it is at 200 hPa where the most intense variation is detected. Finally, an analysis is performed to determine the regions most sensible to variations in the occurrence of extreme events. Tropical areas are mostly responsible of the variations detected in the second group of indices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Angell J.K., 1999. Variation with height and latitude of radiosonde temperature trends in North America, 1975–94. J. Climate, 12, 2551–2561.

    Article  Google Scholar 

  • Bengtsson L., Roeckner E. and Stendel M., 1999. Why is the global warming proceeding much slower than expected? J. Geophys. Res., 105, 3865–3876.

    Article  Google Scholar 

  • Cai W. and Whetton P.H., 2001. Modes of SST variability and the fluctuation of global mean temperature. Clim. Dyn., 17, 889–901.

    Article  Google Scholar 

  • Easterling D.R., Horton B., Jones P.D., Peterson T.C., Karl T.R., Parker D.E., Salinger M.J., Razuvayev V., Plummer N., Jamason P. and Folland C.K., 1997. Maximum and minimum temperature trends for the globe. Science, 277, 364–367.

    Article  Google Scholar 

  • Gaffen D.J., Santer B.D., Boyle J.S., Christy J.R., Graham N.E. and Ross R.J. 2000. Multidecadal changes in the vertical temperature structure of the tropical troposphere. Science, 287, 1242–1245.

    Article  Google Scholar 

  • Hansen J., Sato M., Glascoe J. and Ruedy R., 1998. A common-sense climate index: Is climate changing noticeably? Proc. Natl. Acad. Sci. USA, 95, 4113–4120.

    Article  Google Scholar 

  • Hansen J., Ruedy R., Glascoe J. and Sato M., 1999. GISS analysis of surface temperature change. J. Geophys. Res., 104, 30997–31022.

    Article  Google Scholar 

  • Hansen J., Ruedy R., Sato M. and Lo K., 2002. Global warming continues. Science, 295, 275–275.

    Article  Google Scholar 

  • Hurrell J.W. and Trenberth K.E., 1998. Difficulties in obtaining reliable temperature trends: reconciling the surface and satellite microwave sounding unit records. J. Climate, 11, 945–967.

    Article  Google Scholar 

  • Jones P.D., New M., Parker D.E., Martin S. and Rigor I.G., 1999a. Surface air temperature and its changes over the past 150 years. Rev. Geophys., 37, 173–199.

    Article  Google Scholar 

  • Jones P.D., Horton E.B., Folland C.K., Hulme M., Parker D.E. and Basnett T.A., 1999b. The use of indices to identify changes in climatic extremes. Clim. Change, 42, 131–149.

    Article  Google Scholar 

  • Jones P.D. and Moberg A., 2003. Hemispheric and large-scale surface air temperature variations: an extensive revision and update to 2001. J. Climate, 16, 206–223.

    Article  Google Scholar 

  • Kalnay E., Kanamitsu M., Kistler R., Collins W., Deaven D., Gandin L., Iredell M., Saha S., White G., Woollen J., Zhu Y., Chelliah M., Ebisuzaki W., Higgins W., Janowiak J., Mo K.C., Ropelewski C., Wang J., Leetmaa A., Reynolds R., Jenne R. and Joseph D., 1996. The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteorol. Soc., 77, 437–471.

    Article  Google Scholar 

  • Karl T.R., Knight R.W., Easterling D.R. and Quayle R.G., 1996. Indices of climate change for the United States. Bul. Am. Met. Soc., 77, 279–292.

    Article  Google Scholar 

  • Kistler R., Kalnay E., Collins W., Saha S., White G., Woollen J., Chelliah M., Ebisuzaki W., Kanamitsu M., Kousky V., van den Dool H., Jenne R. and Fiorino M., 2001. The NCEP-NCAR 50-year reanalysis. Monthly means CD-ROM and documentation. Bull. Amer. Meteor. Soc., 82, 247–267.

    Article  Google Scholar 

  • Parker D.E., Jones P.D., Folland C.K. and Bevan A., 1994. Interdecadal changes of surface temperature since the late nineteenth century. J. Geophys. Res., 99, 14,373–14,399.

    Article  Google Scholar 

  • Santer B.D., Wigley T.M.L., Gaffen D.J., Bengtsson L., Doutriaux C., Boyle J.S., Eseh M., Hnilo J.J., Jones P.D., Meehl G.A., Roeckner E., Taylor K.E. and Wehner M.F., 2000. Interpreting differential temperature trends at the surface and in the lower troposphere. Science, 287, 1227–1232.

    Article  Google Scholar 

  • Stott P.A., Tett S.F.B., Jones G.S., Allen M.R., Mitchell J.F.B. and Jenkins G.J., 2001. Attribution of twentieth century temperature change to natural and anthropogenic causes. Clim. Dyn., 17, 1–21.

    Article  Google Scholar 

  • Timmermann A., 1999. Detecting the nonstationary response of ENSO to greenhouse warming. J. Atm. Sci., 56, 2313–2325.

    Article  Google Scholar 

  • Vuille M. and Bradley R.S., 2000. Mean annual temperature trends and their vertical structure in the tropical Andes. Geophys. Res. Let., 27, 3885–3888.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ribera, P., Gimeno, L., Gallego, D. et al. Two Approaches for Determining Extreme Years of Global Atmospheric Temperature. Studia Geophysica et Geodaetica 48, 447–458 (2004). https://doi.org/10.1023/B:SGEG.0000020840.15909.37

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:SGEG.0000020840.15909.37

Navigation