Skip to main content

Characterization of Individual Rock Magnetic Components by Analysis of Remanence Curves, 1. Unmixing Natural Sediments

Abstract

Natural sediments are a complex mixture of magnetic minerals with different origins and different geochemical history, each of which is called a magnetic component. Magnetic components practically never occur in isolated form, and their characterization using bulk magnetic measurements relies on the individuation of the systematic variation of some parameters within a large group of samples. These variations can be interpreted either as a mixing trend or as the result of natural processes, which affect the physical and chemical properties of the magnetic particles. An alternative approach is offered by the analysis of magnetization curves using model functions, which are supposed to represent the magnetic properties of individual components. The success of this approach relies on (1) the choice of model functions that can reproduce the natural properties of a component with sufficient accuracy by varying a minimum number of parameters and (2) on very precise and accurate measurements, which are necessary to overcome the extreme sensitivity of the method to noise. In this paper, the analysis of remanent magnetization curves proposed by Egli (2003) is applied to a large set of representative sediments from the most variable environments and to a set of artificial magnetite samples. Despite the variety of materials and natural processes involved in the formation of these sediments, seven groups of magnetic components with well-defined and consistent properties could be identified. It has been found that both lacustrine and marine sediments contain two magnetically distinct groups of magnetosomes, which react differently to changes of the redox potential. The effects of some natural processes, such as weathering, reductive dissolution and transport could be observed on the individual components.

This is a preview of subscription content, access via your institution.

References

  • Bailey M.E. and Dunlop D.J., 1983. Alternating field characteristics of pseudo-single-domain (2–14 µmm) and multidomain magnetite. Earth Planet. Sci. Lett., 63, 335–352.

    Google Scholar 

  • Baster I., 2002. Holocene Delta in Western Lake Geneva and Its Paleoenvironmental Implications: Seismic and Sedimentological Approach. Ph.D. thesis, Univ. of Geneva, Switzerland.

    Google Scholar 

  • Berner R.A., 1964. Stability fields of iron minerals in anaerobic marine sediments, J. Geology, 72, 826–834.

    Google Scholar 

  • Canfield D.E. and Berner R.A., 1987. Dissolution and pyritization of magnetite in anoxic marine sediments. Geochim. Cosmochim. Acta, 51, 645–659.

    Google Scholar 

  • Canfield D.E., Raiswell R. and Bottrell S., 1992. The reactivity of sedimentary iron minerals toward sulphide. Am. J. Sci., 292, 659–683.

    Google Scholar 

  • Carter-Stiglitz B., Moskowitz B. and Jackson M., 2001. Unmixing magnetic assemblages and the magnetic behaviour of bimodal mixtures. J. Geophys. Res., 106, 26397–26411.

    Google Scholar 

  • Chang S.R., Kirschvink J.L. and Stolz J.F., 1987. Biogenic magnetite as a primary remanence carrier in limestone deposits. Phys. Earth Planet. Inter., 46, 289–303.

    Google Scholar 

  • Dankers P.H.M., 1978. Magnetic Properties of Dispersed Natural Iron-Oxides of Known Grain-Size. Ph.D. thesis, Univ. of Utrecht, The Netherlands.

    Google Scholar 

  • Dankers P. and Sugiura N., 1981. The effect of annealing and concentration on the hysteresis properties of magnetite around the PSD-MD transition. Earth Planet. Sci. Lett., 56, 422–428.

    Google Scholar 

  • Day R., Fuller M. and Schmidt V.A., 1977. Hysteresis properties of titanomagnetites: grain-size and compositional dependence. Phys. Earth Planet. Inter., 13, 260–267.

    Google Scholar 

  • De Boer P.L., 1983. Aspects of middle Cretaceous pelagic sedimentation in southern Europe. Geologica Ultraiectina, 31.

  • De Boer C.B. and Dekkers M.J., 1996. Grain-size dependence of the rock magnetic parameters for a natural maghemite. Geophys. Res. Lett., 23, 2815–2818.

    Google Scholar 

  • Dekkers M.J. and Schoonen M.A.A., 1996. Magnetic properties of hydrothermally synthesized greigite (Fe3S4)-I. Rock magnetic parameters at room temperature. Geophys. J. Int., 126, 360–368.

    Google Scholar 

  • Dunlop D.J. and West G., 1969. An experimental evaluation of single-domain theories. Rev. Geophys., 7, 709–757.

    Google Scholar 

  • Dunlop D.J., 1986a. Coercive forces and coercivity spectra of submicron magnetites. Earth Planet. Sci. Lett., 78, 288–295.

    Google Scholar 

  • Dunlop D.J., 1986b. Hysteresis properties of magnetite and their dependence on particle size: a test of pseudo-single-domain remanence models. J. Geophys. Res., 91, 9569–9584.

    Google Scholar 

  • Dunlop D.J. and Argyle K.S., 1997. Thermoremanence, anhysteretic remanence and susceptibility of submicron magnetites: Nonlinear field dependence and variation with grain size. J. Geophys. Res., 102, 20199–20210.

    Google Scholar 

  • Dunlop D.J. and Özdemir Ö, 1997. Rock Magnetism, Cambridge University Press, 573 pp.

  • Dunlop D.J., 2002. Theory and application of the Day plot (M rs/M s versus H cr/H c), 2: Application to data for rocks, sediments and soils. J. Geophys. Res., 107, doi 10.1029/2001JB 000487.

  • Egli R. and Lowrie W., 2002. The anhysteretic remanent magnetization of fine magnetic particles. J. Geophys. Res., 107, 2209–2229.

    Google Scholar 

  • Egli R., 2003. Analysis of the field dependence of remanent magnetization curves. J. Geophys. Res., 108, doi 10.1029/2002JB002023, 2003.

    Google Scholar 

  • Evans M.E. and Heller F., 1994. Magnetic enhancement and paleoclimate: study of a loess/paleosol couplet across the Loess Plateau of China. Geophys. J. Int., 117, 257–264.

    Google Scholar 

  • Fabian K. and von Dobeneck T., 1997. Isothermal magnetization of samples with stable Preisach function: a survey of hysteresis, remanence, and rock magnetic parameters. J. Geophys. Res., 107, 17659–17667.

    Google Scholar 

  • Fassbinder J.W.E., Stanjek H. and Vali H., 1990. Occurrence of magnetic bacteria in soil. Nature, 343, 161–163.

    Google Scholar 

  • Fearon M., Chantrell R.W. and Wohlfarth E.P., 1990. A theoretical study of interaction effects on the remanence curves of particulate dispersions. J. Magnet. Mag. Mat., 86, 197–206.

    Google Scholar 

  • Flanders P.J., 1994. Collection, measurement, and analysis of airborne magnetic particulates from pollution in the environment. J. Appl. Phys., 75, 5931–5936.

    Google Scholar 

  • Flanders P.J., 1999. Identifying fly ash at a distance from fossil fuel power stations. Environ. Sci. Technol., 33, 528–532.

    Google Scholar 

  • France D.E. and Oldfield F., 2000. Identifying goetite and hematite from rock magnetic measurements of soils and sediments. J. Geophys. Res., 105, 2781–2795.

    Google Scholar 

  • Fuller M., Kidane T. and Ali J., 2002. AF demagnetization characteristics of NRM, compared with anhysteretic and saturation isothermal remanence: an aid in the interpretation of NRM. Phys. Chem. Earth, 27, 1169–1177.

    Google Scholar 

  • Geiss C.E. and Banerjee S.K., 1997. A multi-parameter rock magnetic record of the last glacial-interglacial paleoclimate from south-central Illinois, USA. Earth Planet. Sci. Lett., 152, 203–216.

    Google Scholar 

  • Gillingham E.W. and Stacey F.D., 1971. Anhysteretic remanent magnetization (ARM) in magnetite grains. Pure Appl. Geophys., 91, 160–165.

    Google Scholar 

  • Halgedahl S.L., 1998. Revisiting the Lowrie-Fuller test: alternating field demagnetization characteristics of single-domain through multidomain glass-ceramic magnetite. Earth Planet. Sci. Lett., 160, 257–271.

    Google Scholar 

  • Haneda K. and Morrish A.H., 1977. Magnetite to maghemite transformation in ultrafine particles. J. Physique, 38 (suppl. C1), 321–323.

    Google Scholar 

  • Hanesch M. and Petersen N., 1999. Magnetic properties of a recent parabrown-earth from Southern Germany. Earth Planet. Sci. Lett., 169, 85–87.

    Google Scholar 

  • Hartstra R.L., 1982. A comparative study of the ARM and Isr of some natural magnetites of MD and PSD grain size. Geophys. J. R. Astron. Soc., 71, 497–518.

    Google Scholar 

  • Hawthorne T.B. and McKenzie J.A., 1993. Biogenic magnetite: authigenesis and diagenesis with changing redox conditions in Lake Greifen, Switzerland., In: Applications of Paleomagnetism to Sedimentary Geology, SEPM special publication No 49, 5–15.

  • Heider F., Dunlop D.J. and Soffel H.C., 1992. Low-temperature and alternating field demagnetization of saturation remanence and thermoremanence in magnetite grains (0.037 µmm to 5 mm). J. Geophys. Res., 97, 9371–9381.

    Google Scholar 

  • Heider F., Zitzelsberger A. and Fabian K., 1996. Magnetic susceptibility and remanent coercive force in grown magnetite crystals from 0.1 µmm to 6 mm. Phys. Earth Planet. Inter., 93, 239–256.

    Google Scholar 

  • Heslop D., Dekkers M.J., Kruiver P.P. and van Oorschot I.H.M., 2002. Analysis of isothermal remanent magnetization acquisition curves using the expectation-maximization algorithm. Geophys. J. Int., 148, 58–64.

    Google Scholar 

  • Heslop D., McIntosh G. and Dekkers M.J., 2004. Using time and temperature dependant Preisach models to investigate the limitations of modelling isothermal remanent magnetisation acquisition curves with cumulative log Gaussian functions. Geophys. J. Int. (in press).

  • Hesse P.P., 1997. Mineral magnetic ”tracingřs of aeolian dust in southwest Pacific sediments. Palaeogeography, Palaeoclimatology, Palaeoecology, 131, 327–353.

    Google Scholar 

  • Hilgenfeldt K., 2000. Diagenetic dissolution of biogenic magnetite in surface sediments of the Benguela Upwelling System. Int. J. Earth Sci., 88, 630–640.

    Google Scholar 

  • Hilton J., 1987. A simple model for the interpretation of magnetic records in lacustrine and ocean sediments. Quaternary Res., 27, 160–166.

    Google Scholar 

  • Housen B.A., Banerjee S.K. and Moskowitz B.M., 1996. Low-temperature magnetic properties of siderite and magnetite in marine sediments. Geophys. Res. Lett., 23, 2843–2846.

    Google Scholar 

  • Hüglin C., 2000. Anteil des Strassenverkehrs an den PM10-und PM2.5-Immissionen. Bericht C4 des NFP 41.

  • Johnson H.P. and Merrill R.T., 1972. Magnetic and mineralogical changes associated with low-temperature oxidation of magnetite. J. Geophys. Res., 77, 334–341.

    Google Scholar 

  • Johnson H.P., Lowrie W. and Kent D., 1975. Stability of anhysteretic remanent magnetization in fine and coarse magnetite and maghemite particles. Geophys. J. R. astr. Soc. 41, 1–10.

    Google Scholar 

  • KapiČka A., Jordanova N., Petrovský E. and Ustjak S., 2001. Effect of different soil conditions on magnetic parameters of power-plant fly ashes. J. Appl. Geophys., 48, 93–102.

    Google Scholar 

  • King J., Banerjee S.K., Marvin J. and Özdemir Ö, 1982. A comparison of different magnetic methods for determining the relative grain size in natural materials: some results from lake sediments. Earth Planet. Sci. Lett., 59, 404–419.

    Google Scholar 

  • Kneller E.F. and Luborsky F.E., 1963. Particle size dependence of coercivity and remanence of single-domain particles. J. Appl. Phys., 34, 656–658.

    Google Scholar 

  • Kruiver P.P., Dekkers M.J. and Heslop D., 2001. Quantification of magnetic coercivity components by the analysis of acquisition curves of isothermal remanent magnetization. Earth Planet. Sci. Lett., 189, 269–276.

    Google Scholar 

  • Kruiver P.P. and Passier H.F., 2001. Coercivity analysis of magnetic phases in sapropel S1 related to variations in redox conditions, including an investigation of the S ratio. Geochem. Geophys. Geosys., 14 december 2001, paper number 2001GC000181.

  • Lanci L. and Kent D.V., 2003. Introduction of thermal activation in forward modeling of hysteresis loops for single-domain magnetic particles and implications for the interpretation of the Day diagram. J. Geophys. Res., 108, doi 10.1029/2001JB000944.

  • Lees J.A., 1997. Mineral magnetic properties of mixtures of environmental and synthetic materials: linear additivity and interaction effects. Geophys. J. Int., 131, 335–346.

    Google Scholar 

  • Leslie B.W., Lund S.P. and Hammond D.E., 1990. Rock magnetic evidence for the dissolution and authigenic growth of magnetic minerals within anoxic marine sediments of the California Continental Borderland. J. Geophys. Res., 95, 4437–4452.

    Google Scholar 

  • Levi S. and Merrill R., 1976. A comparison of ARM and TRM in magnetite. Earth Planet. Sci. Lett., 32, 171–184.

    Google Scholar 

  • Lotter A.F., Sturm M., Teranes J.L. and Wehrli B., 1997. Varve formation since 1885 and high-resolution varve analyses in hypertrophic Baldeggersee (Switzerland). Aquatic Sciences, 57, 305–325.

    Google Scholar 

  • Lovley D.R., Stolz J.F., Nord G.L. and Phillips E.J.P., 1987. Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism. Nature, 330, 252–254.

    Google Scholar 

  • Lowrie W. and Heller F., 1982. Magnetic properties of marine limestones. Rev. Geophys. Space Phys., 20, 171–192.

    Google Scholar 

  • Maher B.A., 1988. Magnetic properties of some synthetic sub-micron magnetites. Geophys. J., 94, 83–96.

    Google Scholar 

  • Maher B.A., 1988. Formation of ultrafine-grained magnetite in soils. Nature, 336, 368–370.

    Google Scholar 

  • Maher B.A. and Hounslow M.H., 1999. The significance of magnetotactic bacteria for the paleomagnetic and rock magnetic record of Quaternary sediments and soils. In: Paleomagnetism and Diagenesis in Sediments, Geological Society, London, Special Publications, 151, 43–46.

    Google Scholar 

  • Moskowitz B.M., Frankel R.B., Flanders P.J., Blakemore R.P. and Schwartz B.B., 1988. Magnetic properties of magnetotactic bacteria. J. Magnet. Mag. Mat., 73, 273–288.

    Google Scholar 

  • Moskowitz B.M., Frankel R.B. and Bazylinski D.A., 1993. Rock magnetic criteria for the detection of biogenic magnetite. Earth Planet. Sci. Lett., 120, 283–300.

    Google Scholar 

  • Muxworthy A.R., Schmidbauer E. and Petersen N., 2002. Magnetic properties and Mössbauer spectra of urban atmospheric particulate matter: a case study from Munich, Germany. Geophys. J. Int., 150, 558–570.

    Google Scholar 

  • Néel L., 1949. Théorie du traînage magnétique des ferromagnétiques en grains fins avec applications aux terres cuites. Ann. Géophys., 5, 99–136.

    Google Scholar 

  • Oldfield F., Hunt A., Jones M.D.H., Chester R., Dearing J.A., Olsson L. and Prospero J.M., 1985. Magnetic differentiation of atmospheric dusts. Nature, 317, 516–518.

    Google Scholar 

  • Oldfield F., 1994. Toward the discrimination of fine-grained ferrimagnets by magnetic measurements in lake and near-shore marine sediments. J. Geophys. Res., 99, 9045–9050.

    Google Scholar 

  • Özdemir Ö. and Banerjee S.K., 1982. A preliminary magnetic study of soil samples from west-central Minnesota. Earth Planet. Sci. Lett., 59, 393–403.

    Google Scholar 

  • Passier H.F. and Dekkers M.J., 2002. Iron oxide formation in the active oxidation front above sapropel S1 in the eastern Mediterranean Sea as derived from low-temperature magnetism. Geophys. J. Int., 150, 230–240.

    Google Scholar 

  • Penninga I., de Waard H., Moskowitz B.M., Bazylinski D.A. and Frankel R.B., 1995. Remanence measurements on individual magnetotactic bacteria. J. Magn. Magn. Mat., 149, 279–286.

    Google Scholar 

  • Petersen N., von Dobeneck T. and Vali H., 1986. Fossil bacterial magnetite in deep-sea sediments from the South Atlantic Ocean. Nature, 320, 611–615.

    Google Scholar 

  • Petrovský E. and Ellwood B.B., 1999. Magnetic monitoring of air-land-and water-pollution. In: B.A. Maher and R. Thompson (Eds.), Quaternary Climates, Environments and Magnetism, Cambridge University Press.

  • Proksch R. and Moskowitz B., 1994. Interactions between single domain particles. J. App. Phys., 75, 5894–5896.

    Google Scholar 

  • Robertson D.J. and France D.E., 1994. Discrimination of remanence-carrying minerals in mixtures, using isothermal remanent magnetisation acquisition curves. Phys. Earth Planet. Inter., 82, 223–234.

    Google Scholar 

  • Rochette P., Fillion G., Mattéi J.-L. and Dekkers M.J., 1990. Magnetic transition at 30–34 Kelvin in pyrrhotite: insight into a widespread occurrence of this mineral in rocks. Earth Planet. Sci. Lett., 98, 319–328.

    Google Scholar 

  • Schaller T., Moor H.C. and Wehrli B., 1997. Sedimentary profiles of Fe, Mn, V, Cr, As, Mo as indicators of benthic redox conditions in Baldeggersee. Aquatic Sciences, 57, 345–361.

    Google Scholar 

  • Schmidbauer E. and Schembra N., 1987. Magnetic hysteresis properties and anhysteretic remanent magnetization of spherical Fe3O4 particles in the grain size range 60–160 nm. Phys. Earth Planet. Inter., 46, 77–83.

    Google Scholar 

  • Schwarz E.J., 1975. Magnetic properties of pyrrhotite and their use in applied geology and geophysics. Geol. Surv. Canada. Prof. Paper, 74-59, 1–24.

    Google Scholar 

  • Smirnov A. V. and Tarduno J.A., 2000. Low temperature magnetic properties of pelagic sediments (Ocean Drilling Program Site 805C): traces of maghemitization and magnetic mineral reduction. J. Geophys. Res., 105, 16457–16471.

    Google Scholar 

  • Smirnov A.V. and Tarduno J.A., 2001. Estimating superparamagnetism in marine sediments with the time dependency of coercivity of remanence. J. Geophys. Res., 106, 16135–16143.

    Google Scholar 

  • Snowball I., Zillén L. and Sandgren P., 2002. Bacterial magnetite in Swedish varved lake-sediments: a potential bio-marker of environmental change. Quaternary International, 88, 13–19.

    Google Scholar 

  • Sparks N.C.H., Mann S., Bazylinski D.A., Lovley D.R., Jannasch H.W. and Frankel R.B., 1990. Structure and morphology of magnetite anaerobically-produced by a marine magnetotactic bacterium and a dissimilatory iron-reducing bacterium. Earth Planet. Sci. Lett., 98, 14–22.

    Google Scholar 

  • Spassov S., Heller F., Kretzschmar R., Evans M.E., Yue L.P. and Nourgaliev D.K., 2003. Detrital and pedogenic magnetic mineral phases in the loess/paleosol sequence at Lingtai (Central Chinese Loess Plateau). Phys. Earth Planet. Inter., 140, 255–275.

    Google Scholar 

  • Sprowl D.R., 1990. Numerical estimation of interactive effects in single-domain magnetite. Geophys. Res. Lett., 17, 2009–2012.

    Google Scholar 

  • Stockhausen H., 1998. Some new aspects for the modelling of isothermal remanent magnetization acquisition curves by cumulative log Gaussian functions. Geophys. Res. Lett., 25, 2217–2220.

    Google Scholar 

  • Sugiura N., 1979. ARM, TRM, and magnetic interactions: concentration dependence. Earth Planet. Sci. Lett., 42, 451–455.

    Google Scholar 

  • Suits N.S. and Wilkin R.T., 1998. Pyrite formation in the water column and sediments of a meromictic lake. Geology, 26, 1099–1102.

    Google Scholar 

  • Symons D.T.A. and Cioppa M.T., 2000. Crossover plots: a useful method for plotting SIRM data in paleomagnetism. Geophys. Res. Lett., 27, 1779–1782.

    Google Scholar 

  • Tarduno J.A., 1995. Superparamagnetism and reduction diagenensis in pelagic sediments: Enhancement or depletion? Geophys. Res. Lett., 22, 1337–1340.

    Google Scholar 

  • Thompson R., 1986. Modelling magnetization data using SIMPLEX. Phys. Earth Planet. Inter., 42, 113–127.

    Google Scholar 

  • Vali H., and Kirschvink J.L., 1989. Magnetofossil dissolution in a paleomagnetically unstable deep-sea sediment. Nature, 339, 203–206.

    Google Scholar 

  • Van Velzen A.J. and Zijderveld J.D.A., 1995. Effects of weathering on single-domain magnetite in early Pliocene marine marls. Geophys. J. Int., 121, 267–278.

    Google Scholar 

  • Van Velzen A.J. and Dekkers M.J., 1999. Low-temperature oxidation of magnetite in loess-paleosol sequences: a correction of rock magnetic parameters. Stud. Geophys. Geod., 43, 357–375.

    Google Scholar 

  • Verosub K.L. and Roberts A.P., 1995. Environmental magnetism: past, present and future. J. Geophys. Res., 100, 2175–2192.

    Google Scholar 

  • Von Dobeneck T., 1996. A systematic analysis of natural magnetic mineral assemblages based on modelling hysteresis loops with coercivity-related hyperbolic functions. Geophys. J. Int., 124, 675–694.

    Google Scholar 

  • Wehrli B., Lotter A.F., Schaller T. and Sturm M., 1997. High-resolution varve studies in Baldeggersee (Switzerland): project overview and limnological background data. Aquatic Sciences, 57, 360–386.

    Google Scholar 

  • Worm H.U. and Jackson M., 1999. The superparamagnetism of Yucca Mountain Tuff. J. Geophys. Res., 104, 25415–25425.

    Google Scholar 

  • Xu S. and Dunlop D.J., 1995. Toward a better understanding of the Lowrie-Fuller test. J. Geophys. Res., 100, 22533–22542.

    Google Scholar 

  • Yu L. and Oldfield F., 1989. A multivariate mixing model for identifying sediment source from magnetic measurements. Quaternary Research, 32, 168–181.

    Google Scholar 

  • Yu Y., Dunlop D.J. and Özdemir Ö., 2002. Partial anhysteretic remanent magnetization in magnetite, I: Additivity. J. Geophys. Res., 107, doi 10.1029/2001JB001249.

  • Yu Y., and Dunlop D.J., 2003. Decay-rate dependence of anhysteretic remanence: Fundamental origin and paleomagnetic applications. J. Geophys. Res., 108, doi 10.1029/2003JB 002589.

  • Yamazaki T., 1997. Cautionary note on magnetic grain-size estimation using the ratio of ARM to magnetic susceptibility. Geophys. Res. Lett., 24, 751–754.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Egli, R. Characterization of Individual Rock Magnetic Components by Analysis of Remanence Curves, 1. Unmixing Natural Sediments. Studia Geophysica et Geodaetica 48, 391–446 (2004). https://doi.org/10.1023/B:SGEG.0000020839.45304.6d

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:SGEG.0000020839.45304.6d

  • magnetite
  • magnetic mixtures
  • component analysis
  • biogenic magnetite