Russian Journal of Plant Physiology

, Volume 51, Issue 6, pp 774–784 | Cite as

Functional Characterization of the slr1944 Gene of Cyanobacterium Synechocystis sp. PCC 6803

  • T. S. Serebriiskaya
  • D. A. Los


The properties of Slr1944 protein encoded by the slr1944 gene and participating in the metabolism of lipophilic compounds in a cyanobacterium Synechocystis were under study. Located in the periplasm, this protein comprises a conserved pentapeptide G-X-S-X-G characteristic of lipases, acetylcholinesterases, and thioesterases. An attempt to delete the gene from the cyanobacterial genome failed; this fact presumes an essential function of Slr1944 protein under the optimum growth conditions. Expression of the slr1944 gene in Escherichia coli cells demonstrated a high affinity of the product for lipophilic compounds. An enhanced slr1944 expression deprived Synechocystis cells of the ability to restore the activity of the photosynthetic electron-transport chain following photoinactivation. The authors believe that Slr1944 participates in the biogenesis of the lipophilic components of photosynthetic complexes.

Synechocystis hydrolases lipases lipids gene expression esterases 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Glatz, A., Vass, I., Los, D.A., and Vigh, L., The Synechocystis Model of Stress: From Molecular Chaperones to Membranes, Plant Physiol. Biochem., 1999, vol. 37, pp. 1–12.Google Scholar
  2. 2.
    Kileti, G. and Sykora, J.L., Production and Properties of Cyanobacterial Endotoxins, Appl. Environ. Microbiol., 1982, vol. 43, pp. 104–109.Google Scholar
  3. 3.
    Hoiczyk, E. and Hansel, A., Cyanobacterial Cell Walls: News from an Unusual Prokaryotic Envelope, J. Bacteriol., 2000, vol. 182, pp. 1101–1199.Google Scholar
  4. 4.
    Vigh, L., Los, D.A., Horvath, I., and Murata, N., The Primary Signal in the Biological Perception of Temperature: Pd-Catalyzed Hydrogenation of Membrane Lipids Stimulated the Expression of the desA Gene in Synechocystis PCC6803, Proc. Natl. Acad. Sci. USA, 1993, vol. 90, pp. 9090–9094.Google Scholar
  5. 5.
    Allen, M.M., Cyanobacterial Cell Inclusions, Annu. Rev. Microbiol., 1984, vol. 38, pp. 1–25.Google Scholar
  6. 6.
    Wu, G.F., Wu, Q.Y., and Shen, Z.Y., Accumulation of Poly-β-Hydroxybutyrate in Cyanobacterium Synechocystis sp. PCC 6803, Biores. Technol., 2001, vol. 76, pp. 85–90.Google Scholar
  7. 7.
    Jordan, P., Eromme, P., Witt, H.T., Klulas, O., Saenger, W., and Kruss, N., Three-Dimensional Structure of Cyanobacterial Photosystem I at 2.5 Resolution, Nature, 2001, vol. 411, pp. 909–917.Google Scholar
  8. 8.
    Sarcina, M., Tobin, M.J., and Mullineaux, C.W., Diffusion of Phycobilisomes on the Thylakoid Membranes of the Cyanobacterium Synechococcus 7942: Effect of Phycobilisome Size, Temperature, and Membrane Lipid Composition, J. Biol. Chem., 2001, vol. 6, pp. 46830–46834.Google Scholar
  9. 9.
    Los, D.A. and Murata, N., Structure and Expression of Fatty Acid Desaturases, Biochim. Biophys. Acta, 1998, vol. 1394, pp. 3–15.Google Scholar
  10. 10.
    Froehlich, J.E., Poorman, R., Reardon, E., Barnum, S.R., and Jaworski, J.G., Purification and Characterization of Acyl Carrier Protein from Two Cyanobacterial Species, Eur. J. Biochem., 1990, vol. 193, pp. 817–825.Google Scholar
  11. 11.
    Sato, N., Hagio, M., Wada, H., and Tsuzuki, M., Requirement of Phosphatidylglycerol for Photosynthetic Function in Thylakoid Membranes, Proc. Natl. Acad. Sci. USA, 2000, vol. 97, pp. 10 655–10 660.Google Scholar
  12. 12.
    Guler, S., Essigmann, B., and Benning, C.A., Cyanobacterial Gene, sqdX, Required for Biosynthesis of the Sulfolipid Sulfoquinovosyldiacylglycerol, J. Bacteriol., 2000, vol. 192, pp. 543–545.Google Scholar
  13. 13.
    Kaneko, T., Sato, S., Kotani, H., Tanaka, A., Asamizu, E., Nakamura, Y., Miyajima, N., Hirosawa, M., Sugiura, M., Sasamoto, S., Kimura, T., Hosouchi, T., Matsuno, A., Muraki, A., Nakazaki, N., Naruo, K., Okumura, S., Shimpo, S., Takeuchi, C., Wada, T., Watanabe, A., Yamada, M., Yasuda, M., and Tabata, S., Sequence Analysis of the Genome of the Unicellular Cyanobacterium Synechocystis sp. Strain PCC6803: 2. Sequence Determination of the Entire Genome and Assignment of Potential Protein-Coding Regions, DNA Res., 1996, vol. 3, pp. 109–136.Google Scholar
  14. 14.
    Weir, M., Swindells, M., and Overington, J., Insights into Protein Function through Large-Scale Computational Analysis of Sequence and Structure, Trends Biotechnol., 2001, vol. 19, no. 10 (Suppl.), pp. 61–66.Google Scholar
  15. 15.
    Schrag, J.D. and Cygler, M., Lipase and α/βHydrolase Fold, Methods Enzymol., 1997, vol. 284, pp. 85–107.Google Scholar
  16. 16.
    Svendsen, A., Lipase Protein Engineering, Biochim. Biophys. Acta, 2000, vol. 1543, pp. 223–238.Google Scholar
  17. 17.
    Langin, D., Sequence Similarities between Hormone-Sensitive Lipase and Five Prokaryotic Enzymes, Trends Biochem. Sci., 1993, vol. 18, pp. 466–467.Google Scholar
  18. 18.
    Los, D.A., Horvath, I., Vigh, L., and Murata, N., The Temperature-Dependent Expression of the Desaturase Gene desA in Synechocystis PCC 6803, FEBS Lett., 1993, vol. 378, pp. 57–60.Google Scholar
  19. 19.
    Sambrook, J., Fritsch, E.F., and Maniatis, T., Molecular Cloning: A Laboratory Manual, Cold Springer Harbor: Cold Springer Harbor Lab., 1989.Google Scholar
  20. 20.
    Los, D.A., Ray, M., and Murata, N., Differences in the Control of the Temperature-Dependent Expression of Four Genes for Desaturases in Synechocystis sp. PCC 6803, Mol. Microbiol., 1997, vol. 25, pp. 1167–1175.Google Scholar
  21. 21.
    Suzuki, I., Los, D.A., Kanesaki, Y., Mikami, K., and Murata, N., The Pathway for Perception and Transduction of Low-Temperature Signals in Synechocystis, EMBO J., 2000, vol. 19, pp. 1327–1334.Google Scholar
  22. 22.
    Sergeyenko, T.V. and Los, D.A., Cyanobacterial Leader Peptides for Protein Secretion, FEMS Microbiol. Lett., 2003, vol. 218, pp. 351–357.Google Scholar
  23. 23.
    Williams, J.G.K., Construction of Specific Mutations in Photosystem II Photosynthetic Reaction Center by Genetic Engineering Methods in Synechocystis PCC6803, Methods Enzymol., 1988, vol. 167, pp. 766–778.Google Scholar
  24. 24.
    Kiseleva, L.L., Serebriiskaya, T.S., Horvath, I., Vigh, L., Lyukevich, A.A., and Los, D.A., Expression of the Gene for the 9 Acyl-Lipid Desaturase in the Thermophilic Cyanobacterium, J. Mol. Microbiol. Biotech., 2000, vol. 2, pp. 331–338.Google Scholar
  25. 25.
    Sergeyenko, T.V. and Los, D.A., Identification of Secreted Proteins of the Cyanobacterium Synechocystis sp. Strain PCC 6803, FEMS Microbiol. Lett., 2000, vol. 193, pp. 213–216.Google Scholar
  26. 26.
    Keits, M., Techniques of Lipidology: Isolation, Analysis, and Identification of Lipids, Amsterdam: Elsevier, 1972.Google Scholar
  27. 27.
    Cronan, J.E., Molecular Biology of Bacterial Membrane Lipids, Annu. Rev. Biochem., 1978, vol. 47, pp. 163–189.Google Scholar
  28. 28.
    Kates, M., Bacterial Lipids, Adv. Lipid Res., 1964, vol. 2, pp. 17–90.Google Scholar
  29. 29.
    Fulda, S., Huang, F., Nilsson, F., Hademann, M., and Morling, B., Proteomics of Synechocystis sp. Strain PCC 6803: Identification of Periplasmic Proteins in Cell Grown at Low and High Salt Concentrations, Eur. J. Biochem., 2000, vol. 267, pp. 5900–5907.Google Scholar
  30. 30.
    Hankamer, B., Morris, E., Nielda, J., Carne, A., and Barber, J., Subunit Positioning and Transmembrane Helix Organization in the Core Dimer of Photosystem II, FEBS Lett., 2001, vol. 504, pp. 142–151.Google Scholar
  31. 31.
    Los, D.A. and Murata, N., Responses to Cold-Shock in Cyanobacteria, J. Mol. Microbiol. Biotech., 1999, vol. 2, pp. 221–230.Google Scholar
  32. 32.
    Zak, E., Norling, B., Huang, F., Andersson, B., and Pakrasi, H.B., The Initial Steps of Biogenesis of Cyanobacterial Photosystems Occur in Plasma Membranes, Proc. Natl. Acad. Sci. USA, 2001, vol. 98, pp. 13443–13448.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2004

Authors and Affiliations

  • T. S. Serebriiskaya
    • 1
  • D. A. Los
    • 1
  1. 1.Timiryazev Institute of Plant PhysiologyRussian Academy of SciencesMoscowRussia

Personalised recommendations