Skip to main content
Log in

Abstract

Biogenic isoprene was discovered in the mid-1950s as a component of volatile substances emitted from leaves. In plant species emitting isoprene under illumination, this process is closely related to photosynthesis. Thus, a photobiological phenomenon termed “isoprene effect” or isoprene emission (IE) was discovered. Subsequent studies showed that leaves are capable of releasing isoprene also in darkness, though at a rate two orders of magnitude lower than that in illuminated leaves. It is presently known that the isoprene is emitted not by all plant species from various taxonomic groups, whereas the dark release of isoprene occurs in cells of all living organisms. This review presents a brief historical account of studies dealt with IE. A special emphasis is placed on the roles of light as an energy source and of CO2 as a carbon source; these factors create the energy–metabolite flow that runs through the green photosynthesizing cell. The data available suggest that IE can be considered as a manifestation of excretory function of the leaf. An attempt is made to describe IE from the standpoint of thermodynamics of irreversible processes. It is shown that the cell represents a dissipative structure whose organization and stability is provided by irreversible processes running far from equilibrium. General view on isoprene emission is that it results from regulated conversions of carbon and free energy in a series of photosynthetic reactions under stressful conditions caused by CO2 deficit inside illuminated autotrophic cells. This stress generates the energy overflow, far in excess of the energy-consuming capacity. The necessity of discharging this energy excess is dictated by the fact that the living cell is a dissipative structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

REFERENCES

  1. Sanadze, G.A., Emission of Gaseous Organic Sub-stances from Plants, Rep. Akad. Nauk GruzSSR, 1956, vol. 17, pp. 429–433.

    Google Scholar 

  2. Sanadze, G.A., Nature of Gaseous Substances from the Robinia pseudoacacia Leaves, Rep. Akad. Nauk GruzSSR, 1957, vol. 19, pp. 83–86.

    Google Scholar 

  3. Sanadze, G.A., Seasonal Dynamics of Gaseous Organic Substances Emission from Leaves, Tez. X nauchn. konf. aspirantov i molodykh nauchnykh rabotnikov (Abst. X Conf. Post-Graduate Students and Young Scientists), Tbilisi, 1959, p. 130.

  4. Sanadze, G.A., Hydroxylamine-Inhibited Emission of Gaseous Phytogenic Substances, Sbornik dokl. aspirantov i molodykh nauchnykh rabotnikov (Proc. Rep. Post-Graduate Students and Young Scientists), Tbilisi: Akad. Nauk GruzSSR, 1960, pp 55–59.

    Google Scholar 

  5. Sanadze, G.A. and Dolidze, G.M., Mass-Spectrometric Identification of C5 H8 (Isoprene)-Type Compound from Gaseous Excrete from Plant Leaves, Rep. Akad. Nauk GruzSSR, 1961, vol. 27, pp. 747–750.

    Google Scholar 

  6. Sanadze, G.A., Light and Gaseous Organic Metabolites from Plants, Rep. Akad. Nauk GruzSSR, 1959, vol. 22, pp. 449–454.

    Google Scholar 

  7. Sanadze, G.A., Conditions for Diene C5 H8 (Isoprene) Emission from Leaves, Fiziol. Rast., 1964, vol. 2, pp. 49–52 (Sov. Plant Physiol., Engl. Transl.).

    Google Scholar 

  8. Sanadze, G.A., Biosynthesis and Light-Dependent Isoprene Emission from Leaves, Doctoral (Biol.) Dissertation, Moscow: Inst. Plant Physiol., 1967.

    Google Scholar 

  9. Sanadze, G.A., Light-Dependent Emission of Molecular Isoprene, Progr. Photosynth. Res., 1969, vol. 2, pp. 701–707.

    Google Scholar 

  10. Sanadze, G.A., Mgaloblishvili, M.P., and Dalakishvili, K.G., The Influence of Tserulenine, Phosphoorganic Substances, and Synthetic Carbohydrates on the CO2 Assimilation and Isoprene Effect in Isolated Protoplasts from Poplar Leaves, Fiziol. Rast., 1990, vol. 37, pp. 6–11 (Sov. Plant Physiol., Engl. Transl.).

    Google Scholar 

  11. Deneris, E.S., Stein, R.A., and Mead, J.F., Acid-Catalyzed Formation of Isoprene from a Mevalonate-Derived Product Using a Rat Liver Cytosolic Fraction, J. Biol. Chem., 1985, vol. 260, pp. 1382–1385.

    Google Scholar 

  12. Sanadze, G.A., Emission of Gaseous Organic Substances from Plants, Sbornik dokl. aspirantov i molodykh nauchnykh rabotnikov (Proc. Rep. Post-Graduate Students and Young Scientists), Tbilisi: Akad. Nauk GruzSSR, 1961, pp. 75–79.

    Google Scholar 

  13. Prigozhin, I. and Stengers, I., Poryadok iz khaosa: Novyi dialog cheloveka s prirodoi (The Order from Chaos: New Dialog between Man and Nature), Moscow: Progress, 1986.

    Google Scholar 

  14. Prigozhin, I. and Kondepudi, D., Sovremennaya termodinamika. Ot teplovykh mashin do dissipativnykh struktur (Current Thermodynamics: From Heat Engines to Dissipative Structures), Moscow: Mir, 2002.

    Google Scholar 

  15. Molish, H., Der Einfluss einer Pflanze auf die Andere, Allelopatie (Jena), 1937, p. 3.

  16. Rasmussen, R.A., Isoprene: Identified as a Forest-Type Emission to the Atmosphere, Environ. Sci. Technol., 1970, vol. 4, pp. 667–671.

    Google Scholar 

  17. Sanadze, G.A. and Chiabrishvili, H., Use of NMR-Spectroscopy for Identification of Phytogenic Isoprene, Fiziol. Rast., 1972, vol. 23, pp. 1070–1073 (Sov. Plant Physiol., Engl. Transl.).

    Google Scholar 

  18. Sanadze, G.A., Light-Dependent Mechanism of Diene C5 H8 (Isoprene) Origin in Plant Leaves, Fiziol. Rast., 1966, vol. 13, pp. 753–761 (Sov. Plant Physiol., Engl. Transl.).

    Google Scholar 

  19. Gaffron, H., Energy Storage: Photosynthesis, Plant Physiology, Steward, F.C., Ed., New York: Academic, 1960.

    Google Scholar 

  20. Voskresenskaya, N.P., Fotosintez i spektral'nyi sostav sveta (Photosynthesis and Light Quality), Moscow: Nauka, 1965.

    Google Scholar 

  21. Galston, A., Davies, P., and Satter, R., The Life of the Green Plant, New Jersey: Prentice-Hall, 1983.

    Google Scholar 

  22. Polevoi, V.V., Fiziologiya rastenii (Plant Physiology), Moscow: Vysshaya Shkola, 1989.

    Google Scholar 

  23. Loreto, F. and Sharkey, T.D., A Gas Exchange Study of Photosynthesis and Isoprene Emission in Quercus rubra, L., Planta, 1991, vol. 182, pp. 523–531.

    Google Scholar 

  24. Sharkey, T.D. and Yeh, S., Isoprene Emission from Plants, Annu. Rev. Plant Physiol. Plant Mol. Biol., 2001, vol. 52, pp. 407–436.

    Google Scholar 

  25. Mgaloblishvili, M.P., Khetsuriani, N.D., and Sanadze, G.A., The Influence of Cycloheximide and Chloramphenicol on the Activity of Isolated Chloroplasts, Photosynthesis, and Isoprene Effect in Poplar Leaves, Tez. dokl. 2-i resp. nauchn. konf. po vopr. biokhimii rast. (Abst. the 2nd Republ. Conf. Plant Biochemistry), Tbilisi: Akad. Nauk GruzSSR, 1977, p. 137.

    Google Scholar 

  26. Mgaloblishvili, M.P., Khetsuriani, N.D., Kalandadze, A.N., and Sanadze, G.A., Localization of Isoprene Biosynthesis in the Chloroplasts of Poplar Leaves, Fiziol. Rast., 1978, vol. 25, pp. 1055–1061 (Sov. Plant Physiol., Engl. Transl.).

    Google Scholar 

  27. Baazov, D.I. and Sanadze, G.A., Action Spectrum and an Increase in the Isoprene Emission from Poplar Leaves, Fiziol. Rast., 1987, vol. 34, pp. 213–220 (Sov. Plant Physiol., Engl. Transl.).

    Google Scholar 

  28. Tarkhnishvili, G.M., Kalandadze, A.N., and Sanadze, G.A., The Influence of Partial Pressure of CO2 in the Atmosphere on the Rate of Isoprene Synthesis by Poplar Leaves under Saturating Light Intensity, Rep. Akad. Nauk GruzSSR, 1985, vol. 119, pp. 173–176.

    Google Scholar 

  29. Tarkhnishvili, G.M., Isoprene Effects and Gas Exchange in Poplar Leaves, Cand. Sci. (Biol.) Dissertation, Tbilisi: Tbilis. Gos. Univ., 1988.

    Google Scholar 

  30. Affek, H. and Yakir, D., Natural Abundance Carbon Isotope Composition of Isoprene Reflects Incomplete Coupling between Isoprene Synthesis and Photosynthetic Carbon Flow, Plant Physiol., 2003, vol. 131, pp. 1727–1736.

    Google Scholar 

  31. Egorova, E.A., Bukhov, N.G., Heber, U., Samson, G., and Carpentier, R., Effect of the Pool Size of Stromal Reductants on the Alternative Pathway of Electron Transfer to Photosystem I in Chloroplasts of Intact Leaves, Fiziol. Rast., 2003, vol. 50, pp. 485–495 (Russ. J. Plant Physiol., Engl. Transl.).

    Google Scholar 

  32. Sanadze, G.A., Mgaloblishvili, M.P., and Dalakishvili, K.G., Independence of Carbohydrate Exchange Pathways in the Reactions of Benson–Calvin Cycle and Isoprene Effects, Fiziol. Rast., 1986, vol. 23, pp. 856–863 (Sov. Plant Physiol., Engl. Transl.).

    Google Scholar 

  33. Lyutova, M.N., Karpilova, I.F., Sharkova, V.E., and Romanova, A.K., The Influence of Temperature on the Ribulosodiphosphate Carboxylase from Cucumber and Melon Leaves, Fiziol. Rast., 1985, vol. 32, pp. 1041–1045 (Sov. Plant Physiol., Engl. Transl.).

    Google Scholar 

  34. Lehninger, A.L., Principles of Biochemistry, Worth Publ., 1982, vol. 2.

  35. Goodwin, T.W. and Mercer, E.I., Introduction to Plant Biochemistry, Oxford: Pergamon, 1986, vol. 2.

    Google Scholar 

  36. Heber, U., Conformational Changes of Chloroplasts Induced by Illumination of Leaves In Vivo, Biochim. Biophys. Acta, 1969, vol. 180, pp. 302–319.

    Google Scholar 

  37. Mehler, A.H., Studies on the Reaction of Illuminated Chloroplasts, Arch. Biochem. Biophys., 1951, vol. 34, pp. 339–351.

    Google Scholar 

  38. Sharkey, T.D. and Singsaas, E.L. Why Plants Emit Isoprene, Nature, 1995, vol. 374, p. 769.

    Google Scholar 

  39. Rhomer, M., Khani, M., Simonin, P., and Sahm, H., Isoprenoid Biosynthesis in Bacteria: A Novel Pathway for the Early Steps Leading to Isopentenyl Diphosphate, Biochem. J., 1993, vol. 295, pp. 517–524.

    Google Scholar 

  40. Lichtenthaler, H.K., Schwender, J., Disch, A., and Rohmer, M., Biosynthesis of Isoprenoids in Higher Plant Chloroplasts Proceeds via a Mevalonate-Independent Pathway, FEBS Lett., 1997, vol. 400, pp. 271–274.

    Google Scholar 

  41. Kalandadze, A.N., The Influence of Inhibitors of Metabolism on the Isoprene Emission from Populus nigra Leaves:, Cand. Sci. (Biol.) Dissertation, Tbilisi: Tbilis. Gos. Univ., 1967.

    Google Scholar 

  42. Smillie, R.M., Bishop, D.J., Jibbons, J.C., Graham, D., Gnieve, A.M., Raison, J.K., and Reger, B.J., Determination of the Sites of Synthesis of Proteins and Lipids of the Chloroplast Using Chloramphenicol and Cycloheximide, Anatomy and Biogenesis of Mitochondria and Chloroplasts, Amsterdam: North-Holland, 1971, pp. 422–433.

    Google Scholar 

  43. Sanadze, G.A., Isoprene Effect–Light-Dependent Emission of Isoprene by Green Parts of Plants, Trace Gas Emission by Plants, San Diego: Academic, 1991, pp. 135–152.

    Google Scholar 

  44. Sanadze, G.A. and Dzhaiani, G.I., Carbohydrate Partition within Isoprene Molecule from Photosynthetically Assimilated CO2, Fiziol. Rast., 1972, vol. 19, pp. 1082–1089 (Sov. Plant Physiol., Engl. Transl.).

    Google Scholar 

  45. Tingey, D.T., Manning, M., Grothaus, L., and Burns, W.F., The Influence of Light and Temperature on Isoprene Emission Rates from Live Oak, Physiol. Plant., 1979, vol. 47, pp. 112–118.

    Google Scholar 

  46. Tingey, D.T., Evans, R.C., and Gumpertz, M.L., Effects of Environmental Conditions on Isoprene Emission from Live Oak, Planta, 1981, vol. 152, pp. 565–570.

    Google Scholar 

  47. Tingey, D.T., Evans, R.C., Bates, E.H., and Gumpertz, M.L., Isoprene Emission and Photosynthesis in Three Ferns—the Influence of Light and Temperature, Physiol. Plant., 1987, vol. 69, pp. 609–616.

    Google Scholar 

  48. Rabinovich, E., Fotosintez (Photosynthesis), Moscow: Inostrannaya Literatura, 1951, vol. 1.

    Google Scholar 

  49. Slobodskaya, G.A., Nitrates Assimilation by Photosynthesizing Leaves, Fiziol. Rast., 1968, vol. 15, pp. 511–520 (Sov. Plant Physiol., Engl. Transl.).

    Google Scholar 

  50. Nathan, C., Nitric Oxide as a Secretory Product of Mammalian Cells, FASEB J., 1992, vol. 6, pp. 3051–3064.

    Google Scholar 

  51. Rasmussen, R.A. and Went, F.W., Volatile Organic Material of Plant Origin in the Atmosphere, Proc. Natl. Acad. Sci. USA, 1964, vol. 53, p. 215.

    Google Scholar 

  52. Rasmussen, R.A. and Jones, C.A., Emission of Isoprene from Leaf Discs of Hamamelis, Phytochemistry, 1973, vol. 12, pp. 15–19.

    Google Scholar 

  53. Rasmussen, R.A. and Khalil, M.A.K., Isoprene over the Amazon Basin, J. Geophys. Res., 1988, vol. 93, pp. 1417–1421.

    Google Scholar 

  54. Loomis, D.W. and Croteau, R., Biochemistry of Terpenoids, The Biochemistry of Plants: A Comprehensive Treatise, Stumph, P.K., Ed., New York: Academic, 1980, vol. 4, pp. 364–410.

    Google Scholar 

  55. Khananashvili, O.V. and Sanadze, G.A., Localization of Acetyl-CoA Synthetase in the Chloroplasts of Poplar Leaves, Fiziol. Rast., 1980, vol. 27, pp. 327–335 (Sov. Plant Physiol., Engl. Transl.).

    Google Scholar 

  56. Sanadze, G.A. and Tarkhnishvili, G.M., Effects of Molecular Oxygen on the Isoprene Biosynthesis in Leaves under Saturating Light Intensity, Dokl. Akad. Nauk SSSR, 1986, vol. 286, pp. 501–503.

    Google Scholar 

  57. Fehsenfeld, F.C., Calvert, J., Fall, R., Goldan, P., and Guenther, A.B., Emissions of Volatile Organic Compounds from Vegetation and the Implications for Atmospheric Chemistry, Global Biogeochemical Cycles, 1992, vol. 6, pp. 389–430.

    Google Scholar 

  58. Harley, P.C., Monson, R.K., and Lerdau, M.T., Ecological and Evolutionary Aspects of Isoprene Emission from Plants, Oecologia, 1999, vol. 118, pp. 109–123.

    Google Scholar 

  59. Kesselmeier, J. and Staudt, M., Biogenic Volatile Organic Compounds (VOC): An Overview on Emission, Physiology and Ecology, J. Atmos. Chem., 1999, vol. 33, pp. 23–88.

    Google Scholar 

  60. Fuentes, J.D., Lerdau, M., Atkinson, R., Baldocchi, D., and Bottenheim, J.W., Biogenic Hydrocarbons in the Atmospheric Boundary Layer: A Review, Bull. Am. Meteorol. Soc., 2000, vol. 81, pp. 1537–1575.

    Google Scholar 

  61. Silver, G.M. and Fall, R., Enzymatic Synthesis of Isoprene from Dimethylallyl Diphosphate in Aspen Leaf Extracts, Plant Physiol., 1991, vol. 97, pp. 1588–1591.

    Google Scholar 

  62. Shnitzler, J.-P., Arenz, R., Steinbrecher, R., and Lehning, A., Characterization of an Isoprene Synthase from Leaves of Quercus petrae (Mattuschka), Liebl. Bot. Acta, 1996, vol. 109, pp. 216–221.

    Google Scholar 

  63. Wildermuth, M.C., Subcellular Location and Biophysical Regulation of Foliar Isoprene Production (Chloroplasts), Cand. Sci. (Biol.) Thesis, Boulder, USA: Univ. Colorado, 1997, p. 307.

    Google Scholar 

  64. Wildermuth, M. and Fall, R., Light-Dependent Isoprene Emission – Characterization of Thylakoid-Bound Isoprene Synthase in Salix dicolor Chloroplasts, Plant Physiol., 1996, vol. 112, pp. 171–182.

    Google Scholar 

  65. Kuzma, J. and Fall, R., Leaf Isoprene Emission Rate Is Dependent on Leaf Development and the Level of Isoprene Synthase, Plant Physiol., 1993, vol. 101, pp. 435–440.

    Google Scholar 

  66. Kuzma, J., Nemecek-Marshall, M., Pollok, W.H., and Fall, R., Bacteria Produce the Volatile Hydrocarbon Isoprene, Curr. Microbiol., 1995, vol. 30, pp. 97–103.

    Google Scholar 

  67. Datukishvili, N.T., Tarkhnishvili, G.M., Mikeladze, D.G., Beridze, T.G., and Sanadze, G.A., Isolation and Purification of Protein Responsible for the Conversion of Dimethylallyl Pyrophosphate from Poplar Leaves into Isoprene, Fiziol. Rast., 2001, vol. 48, pp. 257–261 (Russ. J. Plant Physiol., Engl. Transl.).

    Google Scholar 

  68. Loreto, F. and Sharky, T.D., A Gas Exchange Study of Photosynthesis and Isoprene Emission in Quercus rubra, L., Planta, 1990, vol. 182, pp. 523–531.

    Google Scholar 

  69. Fall, R. and Monson, R.K., Isoprene Emission Rate and Intercellular Isoprene Concentration as Influenced by Stomatal Distribution and Conductance, Plant Physiol., 1992, vol. 100, pp. 987–992.

    Google Scholar 

  70. Zimmerman, P.R., Chatfield, R.B., Fishman, J., Crutzen, P.J., and Hanst, P.L., Estimation of the Production of CO2 and H2 from the Oxidation of Hydrocarbon Emission from Vegetation Isoprene, Geophys. Rev. Lett., 1978, vol. 5, pp. 679–682.

    Google Scholar 

  71. Zimmerman, P.R., Determination of Emission Rates of Hydrocarbons from Indigenous Species of Vegetation in the Tampa/St. Petersberg, Florida Area, EPA Rep., 1979, vol. 904/977, pp. 1-104.

    Google Scholar 

  72. Zimmerman, P.R., Greenberg, J.P., and Westberg, C.E., Measurements of Atmospheric Hydrocarbons and Biogenic Emission Fluxes in the Amazon Boundary Layer, J. Geophys. Res., 1988, vol. 93, pp. 1407–1416.

    Google Scholar 

  73. Monson, R.K., Guenther, A.B., and Fall, R., Physiological Reality in Relation to Ecosystem-and Global-Level Estimates of Isoprene Emission, Trace Gas Emissions, Sharkey, T.D., Ed., New York: Academic, 1991, pp. 185–206.

    Google Scholar 

  74. Rosenstiel, T.N., Potosnak, M.J., Griffin, K.L., Fall, R., and Monson, R.K., Increased CO2Uncouples Growth from Isoprene Emission in an Agriforest Ecosystem, Nature, 2003, vol. 421, pp. 256–259.

    Google Scholar 

  75. Hanson, D.T., Swanson, S., Graham, L.E., and Sharky, T.D., Evolutionary Significance of Isoprene Emission from Mosses, Am. J. Bot., 1999, vol. 86, pp. 634–639.

    Google Scholar 

  76. Logan, B.A. and Monson, R.K., Thermotolerance of Leaf Discs from Four Isoprene-Emitting Species Is Not Enhanced by Exposure to Exogenous Isoprene, Plant Physiol., 1999, vol. 120, pp. 821–825.

    Google Scholar 

  77. Wagner, W.P. and Nemeček-Marshall, M., Three Distinct Phases of Isoprene Formation during Growth and Sporulation of Bacillus subtilis, J. Bacteriol., 1999, vol. 181, pp. 4700–4703.

    Google Scholar 

  78. Logan, B.A., Monson, R.K., and Potosnak, M.J., Biochemistry and Physiology of Foliar Isoprene Production, Trends Plant Sci., 2000, vol. 5, pp. 477–481.

    Google Scholar 

  79. Prigozhin, I., Konets opredelennosti: vremya, khaos i novye zakony prirody (The End of Definiteness: Time, Chaos, and New Laws of Nature), Izhevsk: Nauch. Issled. Tsentr "Regulyarnaya i khaoticheskaya dinamika", 2001.

    Google Scholar 

  80. Nemeček-Marshall, M., MacDonald, R., Franzen, J., Wojciechowski, Ch., and Fall, R., Methanol Emission from Leaves, Plant Physiol., 1995, vol. 108, pp. 1359–1368.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sanadze, G.A. Biogenic Isoprene (A Review). Russian Journal of Plant Physiology 51, 729–741 (2004). https://doi.org/10.1023/B:RUPP.0000047821.63354.a4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:RUPP.0000047821.63354.a4

Navigation