Skip to main content
Log in

Modeling of the Elementary Processes of Metal Azide Decomposition

  • Published:
Russian Physics Journal Aims and scope

Abstract

An analysis of the available experimental data on the slow and explosive decomposition of metal azides demonstrates that the intermediate product of the reaction is N6. Based on quantum-chemical calculations, the most symmetrical stable N6 complexes with cyclic, linear, and previously undetected octahedral configurations are established. The energy balance of reactions is calculated. It is demonstrated that the activation energy of forming the cyclic complex is minimum, and the energy of forming the octahedral complex is maximum. Conditions of forming complexes inside the crystal matrix are discussed. An important role of metal in the formation of complexes from azide groups is demonstrated, in particular, the existence of the stable Me2N6 cluster is established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. F. P. Bowden and A. D. Ioffe, Fast Reactions in Solids, Butterwords Scientific Publications, London (1985).

    Google Scholar 

  2. H. D. Fair and R. F. Walker, Energetic Materials, Vol. 1, Plenum Press, New York (1987).

    Google Scholar 

  3. Yu. A. Zakharov, É. D. Aluker, B. P. Aduev, et al., Pre-explosive Phenomena in Heavy-Metal Azides [in Russian], Khimmash, Moscow (2002).

    Google Scholar 

  4. A. S. Biryukov, E. D. Bulatov, S. A. Gridin, et al., Khim. Fiz., 4, No. 1, 79–88 (1985).

    Google Scholar 

  5. V. Yu. Zakharov, V. I. Krasheninin, E. G. Gazenauér, et al., Izv. Vyssh. Uchebn. Zaved., Fiz., No. 6, 17–21 (2002).

  6. A. Bonnemay and R. Dandel, Compt. Rend., 23, 2300–2302 (1950).

    Google Scholar 

  7. E. Clementi, J. Chem. Phys., 34, No. 3, 1468–969 (1961).

    Google Scholar 

  8. E. Clementi, A. D. McIean, J. Chem. Phys., 39, No. 1, 323–326 (1963).

    Google Scholar 

  9. S. D. Peyerimhoff and R. J. Buenker, J. Chem. Phys., 47, No. 4, 1953–1966 (1967).

    Google Scholar 

  10. J. F. Wyatt, I. H. Hiller, V. R. Saunders, et al., J. Chem. Phys., 54, No. 12, 5311–5315 (1971).

    Google Scholar 

  11. T. W. Archibald and J. R. Sabin, J. Chem. Phys., 55, No. 4, 1821–1829 (1971).

    Google Scholar 

  12. T. Gora and P. J. Kemmey, J. Chem. Phys., 57, No. 8, 3579–3581 (1972).

    Google Scholar 

  13. A. R. Rossi and R. N. Bartram, J. Chem. Phys., 70, No. 1, 532–537 (1979).

    Google Scholar 

  14. U. Kaldor, Int. J. Quant. Chem., 24, 291–294 (1990).

    Google Scholar 

  15. H. Hyber, T. K. Ha, and M. T. Nguyen, J. Mol. Struct., 105, 351–358 (1983).

    Google Scholar 

  16. M. Ramek, J. Mol. Struct., 109, 391 (1984).

    Google Scholar 

  17. M. T. Nguyen, J. Phys. Chem., 94, 6923–6924 (1990).

    Google Scholar 

  18. R. Engelke, Ibid., 6924–6925.

  19. V. Kriger, A. Kalensky, and I. Bulusheva, in: Proc. 11th Int. Conf. Radiative Physics and Chemistry of Condensed Matter [in Russian], Tomsk (2000), pp. 58–60.

  20. M. W. Schmidt, K. K. Baldridge, J. A. Boatz, et al., J. Comput. Chem., 14, 1347–1363 (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aluker, É.D., Zhuravlev, Y.N., Zakharov, V.Y. et al. Modeling of the Elementary Processes of Metal Azide Decomposition. Russian Physics Journal 46, 1057–1061 (2003). https://doi.org/10.1023/B:RUPJ.0000020820.88151.b9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:RUPJ.0000020820.88151.b9

Keywords

Navigation