Skip to main content
Log in

Evolution of the Structure and Carbon Atom Transfer in the Zone of Fatigue Crack Growth in Ferrite-Pearlite Steel

  • Published:
Russian Physics Journal Aims and scope

Abstract

Structure and phase transformations in Fe–0.6C–1Mn–2Si steel subjected to multicyclic fatigue tests under normal conditions and with intermediate electrostimulation are investigated by the methods of metallography of etched microsections and scanning and transmission electron diffraction microscopy of thin foils and carbon replicas. It is demonstrated that fatigue failure under normal loading is preceded by complete dissolution of initial cementite particles with carbon localized on structural defects (dislocations, subboundaries, and boundaries), micropores, and microcracks. Electrostimulation, promoting the relaxation of stress concentrators through dissolution of particles localized on the grain boundaries and the state change of the interphase boundaries between the matrix and second-phase particle, causes the mean and maximum subcritical crack length to increase together with the thickness of the sample layer involved in the strain of the material and the zone of fatigue crack growth. This is accompanied by a significant increase in the operating lifetime of the material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. D. Kennedy, Creep and Fatigue in Metals [in Russian], Metallurgiya, Moscow (1965).

    Google Scholar 

  2. V. S. Ivanova and V. F. Terent'ev, The Nature of Meatal Fatigue [in Russian], Metallurgiya, Moscow (1975).

    Google Scholar 

  3. S. Kotsan'da, Fatigue Cracking of Metals [in Russian], Metallurgiya, Moscow (1990).

    Google Scholar 

  4. V. F. Terent'ev, Fatigue of Metallic Materials [in Russian], Nauka, Moscow (2002).

    Google Scholar 

  5. V. I. Spitsyn and O. A. Troitskii, Electroplastic Strain of Metals [in Russian], Nauka, Moscow (1985).

    Google Scholar 

  6. V. E. Gromov, L. B. Zuev, É. V. Kozlov, and V. Ya. Tsellermaer, Electrostimulated Plasticity of Metals and Alloys [in Russian], Nedra, Moscow (1996).

    Google Scholar 

  7. O. V. Sosnin, V. E. Gromov, and É. V. Kozlov, eds., Electrostimulated Low-Cycle Fatigue [in Russian], Nedra Communications LTD, Moscow (2000).

    Google Scholar 

  8. A. F. Sprecher, S. L. Mannan, and H. Conrad, Acta Metall., 3, No. 7, 1145–1162 (1986).

    Google Scholar 

  9. L. B. Zuev, O. V. Sosnin, V. E. Gromov, and G. V. Trusova, Metallofiz. Noveish. Tekhnol., 19, No. 4

  10. V. E. Gromov, E. V. Semakin, V. Ya. Tsellermaer, and O. V. Sosnin, Izv. Ross. Akad. Nauk, Ser. Fizich., No. 5, 1019–1023 (1997).

    Google Scholar 

  11. Yu. F. Ivanov, D. V. Lychagin, V. E. Gromov, et al., Fizich. Mezomekh., 3, No. 1, 103–108 (2000).

    Google Scholar 

  12. V. G. Sorokin, ed., Brands of Steels and Alloys [in Russian], Mashinostroenie, Moscow (1989).

    Google Scholar 

  13. K. S. Chernyavskii, Stereology in Metallography [in Russian], Metallurgiya, Moscow (1977).

    Google Scholar 

  14. L. M. Utevskii, Diffraction Electron Microscopy in Metallography [in Russian], Metallurgiya, Moscow (1973).

    Google Scholar 

  15. K. W. Andrews, D. J. Deson, and S. R. Keown, Interpretation of Electron Diffraction Patterns [Russian translation], Mir, Moscow (1971).

    Google Scholar 

  16. V. E. Gromov, É. V. Kozlov, V. I. Bazaikin, et al., Physics and Mechanics of Drawing and Drop Forging [in Russian], Nedra, Moscow (1997).

    Google Scholar 

  17. V. I. Gridnev, V. G. Gavrilyuk, and Yu. Ya. Meshkov, Strength and Plasticity of Cold-Deformed Steel [in Russian], Naukova Dumka, Kiev (1974).

    Google Scholar 

  18. L. I. Tushinskii, A. A. Bataev, and L. B. Tikhomirov, Perlite Strusture and Structural Steel Strength [in Russian], Nauka, Novosibirsk (1993).

    Google Scholar 

  19. V. K. Babich, Yu. P. Gul', and I. E. Dolzhenkov, Strain-Induced Steel Aging [in Russian], Metallurgiya, Moscow (1972).

    Google Scholar 

  20. W. B. Pearson, A Handbook of Lattice Spacings and Structures of Metals and Alloys. Vol. 2, Pergamon Press (1984).

  21. N. A. Koneva, L. A. Teplyakova, V. V. Tsellermaer, et al., Izv. Vyssh. Uchebn. Zaved., Fiz., No. 3, 87–99 (2002).

    Google Scholar 

  22. O. V. Klyavin, Yu. M. Chernov, and G. I. Shvets, Preprint No. 1323 [in Russian], A. F. Ioffe Physical-Technical Institute, Leningrad (1989).

  23. O. V. Klyavin, Yu. M. Chernov, and G. I. Shvets, Preprint No. 1324 [in Russian], A. F. Ioffe Physical-Technical Institute, Leningrad (1989).

  24. O. V. Klyavin, Yu. M. Chernov, and G. I. Shvets, Preprint No. 1325 [in Russian], A. F. Ioffe Physical-Technical Institute, Leningrad (1989).

  25. V. M. Schastlivtsev, D. A. Mirzaev, and I. L. Yakovleva, Izv. Vyssh. Uchebn. Zaved., Chern. Metall., No. 5, 50–59 (1996).

    Google Scholar 

  26. A. N. Maratkanova, Yu. V. Rats, D. V. Surnikov, et al., Fiz. Met. Metalloved., 89, No. 6, 76–81 (2000).

    Google Scholar 

  27. I. L. Yakovleva, L. E. Kar'kina, Yu. V. Khlebnikova, et al., in: Proc. School-Seminar on Phase and Structural Transformations in Steels, Magnitogorsk (2002), pp. 157–194.

  28. Yu. N. Petrov, Defects and Nondiffusive Transformation in Steel [in Russian], Naukova Dumka, Kiev (1978).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sosnin, O.V., Tsellermaer, V.V., Ivanov, Y.F. et al. Evolution of the Structure and Carbon Atom Transfer in the Zone of Fatigue Crack Growth in Ferrite-Pearlite Steel. Russian Physics Journal 46, 1047–1056 (2003). https://doi.org/10.1023/B:RUPJ.0000020819.72492.10

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:RUPJ.0000020819.72492.10

Keywords

Navigation