Skip to main content
Log in

The Quasi-Fractal Structure of Fish Brain Neurons

  • Published:
Russian Journal of Marine Biology Aims and scope Submit manuscript

Abstract

The box-counting method for calculating the fractal dimension (D) with the ImageJ 1.20s software is used as a tool for quantitative analysis of the neuronal morphology in the fish brain. The fractal dimension was determined for several types of neurons in the brain of two teleost species, Pholidapus dybowskii and Oncorhynchus keta. These results were compared with those obtained for some neurons of the human brain. The fractal (fractional) dimension (D), as a quantitative index of filling of two-dimensional space by the black and white image of a cell, is shown to vary from 1.22 to 1.72 depending on the type of neuron. The fractal dimension reaches its maximum in less specialized neurons that carry out a number of different functions. On the other hand, highly specialized neurons display a relatively low fractal dimension. Thus, the fractal dimension serves as a numerical measure of the spatial complexity of the neuron and correlates with the morphofunctional organization of the cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Andreeva, N.G. and Obukhov, D.K., Evolyutsionnaya morfologiya nervnoi sistemy pozvonochnykh (Evolutionary Morphology of the Nervous System of Vertebrates), St. Petersburg: Lan', 1999.

    Google Scholar 

  2. Isaeva, V.V., Sinergetica dlya biologov. Vvodnyi kurs (Synergetics for Biologists. An Introductory Course), Vladivostok: Izd. DVGU, 2003.

    Google Scholar 

  3. Isaeva, V.V., Chernyshev, A.V., and Shkuratov, D.Yu., Fractals and Chaos in Organism Morphology, Vestn. DVO RAN, 2001, no. 2, pp. 71–79.

  4. Leontovich, T.A., Neironnaya organizatsiya podkorkovykh obrazovanii perednego mozga (Neuronal Organization of the Subcortical Structures of the Forebrain, Moscow: Meditsina, 1978.

    Google Scholar 

  5. Pushchina, E.V. and Varaksin, A.A., Argirophilic and Nitroxidergic Bipolar Neurons (Lugaro Cells) in the Cerebellum of Pholidapus dybowskii, Zh. Evol. Biokhim. i Fiziol., 2001, vol. 37,no. 5, pp. 437–441.

    Google Scholar 

  6. Savel'ev, S.V., Sravnitel'naya anatomiya nervnoi sistemy pozvonochnykh (Comparative Anatomy of the Nervous System of Vertebrates), Moscow: GEOTARMED, 2001.

    Google Scholar 

  7. Sepp, E.K., Istoriya razvitiya nervnoi sistemy pozvonochnykh (History of the Development of the Nervous System in Vertebrates), Moscow: Medgiz, 1959.

    Google Scholar 

  8. Feder, J., Fractals, New York: Plenum Press, 1988. Translated under the title Fraktaly, Moscow: Mir, 1991.

    Google Scholar 

  9. Shul'govskii, V.V., Fiziologiya tsentral'noi nervnoi sistemy (Physiology of the Central Nervous System), Moscow: MGU, 1997.

    Google Scholar 

  10. Barinaga, M., New Clues to How Neurons Strengthen Their Connections, Science, 1999, vol. 284,no. 5421, pp. 1755–1757.

    Google Scholar 

  11. Barinaga, M., Synapses Call the Shots, Science, 2000, vol. 290,no. 5492, pp. 735–738.

    Google Scholar 

  12. Caserta, F., Stanley, H.E., Eldred, W.D., et al., Physical Mechanisms Underlying Neurite Outgrowth; a Quantitative Analysis of Neuronal Shape, Phys. Rev. Lett., 1990, vol. 64, pp. 95–98.

    Google Scholar 

  13. Costa, L.C., Manoel, E.T.M., Faucereau, F., et al., A Shape Analysis Framework for Neuromorphometry, Network: Comput. Neural. Syst., 2002, vol. 13, pp. 283–310.

    Google Scholar 

  14. Dickson, B.J., Molecular Mechanisms of Axon Guidance, Science, 2002, vol. 298,no. 5600, pp. 1959–1964.

    Google Scholar 

  15. Fernandez, E., Bolea, J.A., Ortega, G., and Louis, E., Are Neurons Multifractals? J. Neurosci. Meth., 1999, vol. 89, pp. 151–157.

    Google Scholar 

  16. Goldberger, A.L., Fractal Variability versus Pathological Periodicity: Complexity and Stereotypy in Disease, Perspect. Biol. Med., 1997, vol. 40,no. 4, pp. 543–561.

    Google Scholar 

  17. Goldberger, A.L., Rigley, D.R., and West, B.J., Chaos and Fractals in Human Physiology, Sci. Amer., 1990, vol. 162,no. 2, pp. 43–49.

    Google Scholar 

  18. Häusser, M., Spruston, N., and Stuart, G.J., Diversity and Dynamics of Dendritic Signalling, Science, 2000, vol. 290,no. 5492, pp. 739–744.

    Google Scholar 

  19. Jelinek H.F. and Fernandez, E., Neurons and Fractals: How Reliable and Useful Are Calculations of Fractal Dimensions? J. Neurosc. Meth., 1998, vol. 81, pp. 9–18.

    Google Scholar 

  20. Jelinek, H.F. and Spence, I., Catergorization of Physiologically Characterized Non-α/Non-β Cat Retinal Ganglion Cells Using Fractal Geometry, Fractals, 1997, vol. 5,no. 4, pp. 673–684.

    Google Scholar 

  21. Kniffki, K.-D., Pawlak, M., and Vahle-Hinz, C., Fractal Dimensions and Dendritic Branching of Neurons in the Somatosensory Thalamus, in Fractals in Biology and Medicine, Basel: Birkhäuser, 1994, pp. 221–229.

    Google Scholar 

  22. Malevic-Savatic, M., Malinow, R., and Svoboda, K., Rapid Dendritic Morphogenesis in CA1 Hippocampal Dendrites Induced by Synaptic Activity, Science, 1999, vol. 283, pp. 1923–1926.

    Google Scholar 

  23. Mandelbrot, B.B., The Fractal Geometry of Nature, New York: Freeman, 1983.

    Google Scholar 

  24. Manso, M.J. and Anadon, R., Golgi Study of the Telecephalon of the Small-Spotted Dogfish Scyliorhinus canicula, J. Comp. Neurol., 1993, vol. 333, pp. 485–502.

    Google Scholar 

  25. Murray, J.D., Use and Abuse of Fractal Theory in Neuroscience, J. Comp. Neurol., 1995, vol. 361,no. 3, pp. 369–371.

    Google Scholar 

  26. Panico, J. and Sterling, P., Retinal Neurons and Vessels Are not Fractal but Space-Filling, J. Comp. Neurol., 1995, vol. 361, pp. 479–490.

    Google Scholar 

  27. Puschina, E.V. and Varaksin, A.A., Morphological Organization of Large Golgi Neurons in the Cerebellum of the Opisthocentrid Pholidapus dybowskii, Neurosci. Behav. Physiol., 2002, vol. 32,no. 4, pp. 341–345.

    Google Scholar 

  28. Rakic, P, Bourgeous, J.-P., Eckenhoff, M.F., et al., Concurrent Overproduction of Synapse in Diverse Regions of the Primate Cerebral Cortex, Science, 1986, vol. 232, pp. 232–235.

    Google Scholar 

  29. Schiff, S.J., Jerger, K., Duong, D.H., et al., Controlling Chaos in the Brain, Nature, 1994, vol. 370, pp. 615–620.

    Google Scholar 

  30. Smith, T.G. and Lange, G.D., Fractal Studies of Neuronal and Glial Cellular Morphology, in Fractal Geometry in Biological Systems: An Analytical Approach, Boca Raton: CRC Press, 1996, pp. 173–186.

    Google Scholar 

  31. Smith, T.G., Lange, G.D., and Marks, W.B., Fractal Methods and Results in Cellular Biology—Dimensions, Lacunarity, and Multifractals, J. Neurosci. Meth., 1996, pp. 123–136.

  32. Smith, T.G. and Neale, E.A., A Fractal Analysis of Morphological Differentiation of Spinal Cord Neurons in Cell Culture, in Fractals in Biology and Medicine, Basel: Birkhäuser, 1994, pp. 210–220.

    Google Scholar 

  33. Stanley, H.E., Learning Concepts of Fractals and Probability by “Doing Science,” Physica D, 1989, vol. 38,nos. 1–3, pp. 330–340.

    Google Scholar 

  34. Stern, P. and Marx, J., Beautiful, Complex, and Diverse Specialists, Science, 2000, vol. 290,no. 5492, p. 735.

    Google Scholar 

  35. Waliszewski, P. and Konarski, J., Neuronal Differentiation and Synapse Formation Occur in Space and Time with Fractal Dimension, Synapse, 2002, vol. 43, pp. 252–258.

    Google Scholar 

  36. Weibel, E.R., Fractal Geometry: A Design Principle for Living Organisms, Amer. J. Physiol, 1991, vol. 261, pp. L361-L369.

    Google Scholar 

  37. Weibel, E.R., Design of Biological Organisms and Fractal Geometry, in Fractals in Biology and Medicine, Basel: Birkhäuser, 1994, pp. 68–85.

    Google Scholar 

  38. Wingate, R.J.T., Fitzgibbon, T., and Thompson, I.D., Lucifer Yellow, Retrograde Tracers, and Fractal Analysis Characterize Adult Ferret Retinal Ganglion Cells, J. Comp. Neurol., 1992, vol. 323, pp. 449–474.

    Google Scholar 

  39. Wullimann, M.F., The Central Nervous System, in The Physiology of Fishes, Boca Raton, New York: CRS Press, 1997, pp. 245–282.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Isaeva, V.V., Pushchina, E.V. & Karetin, Y.A. The Quasi-Fractal Structure of Fish Brain Neurons. Russian Journal of Marine Biology 30, 127–134 (2004). https://doi.org/10.1023/B:RUMB.0000025989.29570.9d

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:RUMB.0000025989.29570.9d

Navigation