A Comparative Evaluation of the Metal-Binding Activity of Low-Esterified Pectin from the Seagrass Zostera marina and Other Sorbents


A comparative study of the sorption capacity of low-esterified pectin from the seagrass Zostera marina and drugs used for hemosorption and enterosorption was made. Low-esterified pectin was less efficient in binding in vitro lead, cadmium, and copper compared to chelating and thiol-containing compounds; but it was much more efficient than activated carbon, polyphepan, microcrystalline cellulose, and enterodez.

This is a preview of subscription content, access via your institution.


  1. 1.

    Afanasyev, S.P., Chirva, V.Yu., Katseva, G.N., et al., Modification of Titrimetric Analysis of Pectic Substances, Khimiya Prirod. Soedin., 1984, no. 4, pp. 428-431.

  2. 2.

    Loenko, Yu.N., Artyukhov, A.A., Kozlovskaya, E.P., et al., Zosterin (Zosterine), Vladivostok: Dalnauka, 1997.

    Google Scholar 

  3. 3.

    Anderson, J.W., Jones, A.E., and Riddell-Mason, S., Ten Different Dietary Fibers Have Significantly Different Effects on Serum and Liver Lipids of Cholesterol-Fed Rats, J. Nutr., 1994, vol. 124, pp. 78-83.

    Google Scholar 

  4. 4.

    Blumenkrantz, S. and Asboe-Haunsen, G., New Method for Quantitative Determination of Uronic Acids, Anal. Biochem., 1973, vol. 54, pp. 484-489.

    Google Scholar 

  5. 5.

    Choi, Y., Cho, S.H., Kim, H.J., and Lee, H.J., Effects of Soluble Fibers on Lipid Metabolism and Activities of Intestinal Disaccharidases in Rats, J. Nutr. Sci. Vitaminol. (Tokyo), 1998, vol. 44, pp. 591-600.

    Google Scholar 

  6. 6.

    Darvill, A.G., McNeil, M., and Albershein, P., Structure of Plant Cell Wall. VIII. A New Pectic Polysaccharide, Plant Physiol., 1978, vol. 62, p. 418.

    Google Scholar 

  7. 7.

    de Vries, J.A., Rombouts, F.M., Voragen, A.G.J., and Pilnik, W., Emzymic Degradation of Apple Pectins, Carbohydr. Polym., 1982, vol. 2, p. 25.

    Google Scholar 

  8. 8.

    Dongowski, G., Influence of Pectin Structure on the Interaction with Bile Acids under in vitro Conditions, Lebensm. Unters. Forsch., 1995, vol. 201, pp. 390-398.

    Google Scholar 

  9. 9.

    Fernandez, M.L., Distinct Mechanisms of Plasma LDL Lowering by Dietary Fiber in Guinea Pig: Specific Effects of Pectin, Guar Gum, and Psyllium, J. Lipid Res., 1995, vol. 36, pp. 2394-2404.

    Google Scholar 

  10. 10.

    Formigli, L.M., Ferrari, I., and Grisolia, C.K., Evaluation of genotoxic and Cytotoxic Potential of Thiola (N-2-Mercaptopropionylglycine), a Medicine Used in the Treatment of Humans Contaminated with Mercury, Environ. Mol. Mutagen., 2002, vol. 39, pp. 18-21.

    Google Scholar 

  11. 11.

    Hsieh, T.C. and Wu, J.M., Changes in Cell Growth, Cyclin/Kinase, Endogenous Phosphoproteins and nm23 Gene Expression in Human Prostatic JCA-1 cells Treated with Modified Citrus Pectin, Biochem. Mol. Biol. Int., 1995, vol. 59, pp. 2130-2131.

    Google Scholar 

  12. 12.

    Kim, M., Atallah, M.T., Amarasiriwardena, C., and Barnes, R., Pectin with Low Molecular Weight and High Degree of Esterification Increases Absorption of 58Fe in Growing Rats, J. Nutr., 1996, vol. 126, pp. 1883-1890.

    Google Scholar 

  13. 13.

    Kravtchenko, T.P. and Pilnik, A., A Simplified Method for the Determination of the Intrinsic Viscosity of Pectin Solutions by Classical Viscosimetry, Gums and Stabilizers in the Food Industry, Oxford: IRL Press, 1990, vol. 5, pp. 281-285.

    Google Scholar 

  14. 14.

    Lim, B.O., Yamada, K., Nonaka, M., et al., Dietary Fibers Modulate Indices of Intestinal Immune Function in Rats, J. Nutr., 1998, vol. 127, pp. 663-667.

    Google Scholar 

  15. 15.

    Lin, J.L., Yu, C.C., Lin Tan, D.T., and Ho, H.H., Lead Chelation Theraphy and Urate Excretion in Patients with Chronic Renal Diseases and Gout, Kidney Int., 2001, vol. 60, pp. 266-271.

    Google Scholar 

  16. 16.

    Mandelbaum, D.E., Chelation Therapy in Children Exposed to Lead, New England J. Med., 2001, vol. 345, p. 1213.

    Google Scholar 

  17. 17.

    Muralikrishna, G. and Taranathan, R.N., Characterization of Pectin Polysaccharides from Pulse Husks, Food Chem., 1994, vol. 50, pp. 87-89.

    Google Scholar 

  18. 18.

    Ovodov, Yu.S., Ovodova, R.G., Shibaeva, V.I., and Mikheyskaya, L.V., Further Structural Studies of Zosterine, Carbohydr. Res., 1975, vol. 42, pp. 197-199.

    Google Scholar 

  19. 19.

    Ovodova, R.G., Vaskovsky, V.E., and Ovodov, Yu.S. The Pectic Substances of Zosteraceae, Carbohydr. Res., 1968, vol. 6, pp. 328-332.

    Google Scholar 

  20. 20.

    Plaami, S.P., Content of Dietary Fiber in Foods and Its Physiological Effects, Food Rev. Int., 1997, vol. 13, pp. 29-76.

    Google Scholar 

  21. 21.

    Popov, S.V., Popova, G.Y., Ovodova, R.G., et al., Effects of Polysaccharides from Silene vulgaris on phagocytes, Int. J. Immunopharmacol., 1999, vol. 21, pp. 617-624.

    Google Scholar 

  22. 22.

    Ridley, B.L., O'Neil, M.A., and Mohnen, D., Pectins: Structure, Biosynthesis, and Oligogalacturonide-Related Signaling, Phytochemistry, 2001, vol. 57, pp. 929-967.

    Google Scholar 

  23. 23.

    Tandon, S.K., Prasad, S., and Singh, S., Chelation in Metal Intoxication: Influence of Cysteine or N-Acetyl Cysteine on the Efficacy of 2,3-Dimercaptopropane-1-Sulphonate in the Treatment of Cadmium Toxicity, J. Appl. Toxicol., 2002, vol. 22, pp. 67-71.

    Google Scholar 

  24. 24.

    Thakur, B.R., Singh, R.K., and Handa, A.K., Chemistry and Uses of Pectin. A Review, Crit. Rev. Food Sci. Nutr., 1997, vol. 37, pp. 47-37.

    Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sergushchenko, I.S., Kovalev, V.V., Bednyak, V.E. et al. A Comparative Evaluation of the Metal-Binding Activity of Low-Esterified Pectin from the Seagrass Zostera marina and Other Sorbents. Russian Journal of Marine Biology 30, 70–72 (2004). https://doi.org/10.1023/B:RUMB.0000020573.30479.c4

Download citation

  • Low-esterified pectin
  • Zostera marina
  • heavy metals