Skip to main content
Log in

Changes in the Fatty Acid Composition of Hepatopancreas of the Mollusk Mytilus trossulus Fed on Microalgae

  • Published:
Russian Journal of Marine Biology Aims and scope Submit manuscript

Abstract

The influence of diet on the fatty acid composition of the hepatopancreas of Mytilus trossulus was studied. Three groups of mollusks were fed monocultures of the microalgae Phaeodactylum tricornutum, Chaetoceros muelleri (Bacillariophyceae), and Nannochloropsis sp. (Eustigmatophyceae) for 10 days. After 10 days, the proportion of polyunsaturated fatty acids, mainly eicosapentaenoic and docosahexaenoic, increased in the total lipids of the hepatopancreas in all mollusk groups. The content of saturated fatty acids in the mussel tissues decreased and was not dependent on the amount in the algal diet. Toward the end of the experiment, the fatty acid composition of the hepatopancreas of mussels was similar irrespective of the fatty acid composition of their food. The fatty acid analysis of M. trossulus feces suggests a selective assimilation by mussels of predominantly the n-3 polyunsaturated fatty acids. The role of fatty acid metabolism in M. trossulus is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vaskovsky, V.E., Svetashev, V.I., and Khotimchenko, S.V., Selective Splitting and Assimilation of Lipids in the Digestive Tract of the Sea Urchin Strongylocentrotus intermedius, Zhurn. Evol. Biokhim. Fiziol. dy1982, vol. 18, pp. 519-522.

  2. Kabanova, Yu.G., On the Laboratory Cultivation of Planktonic Diatoms and Dinoflagellates, Tr. Inst. Okeanol. Akad. Nauk SSSR, 1961, vol. 47, pp. 203-216.

    Google Scholar 

  3. Romashina, N.A., Zhukova, N.V., and Sheina, V.P., Lipids and Fatty Acids of Edible Mussel Cultivated in Posyet Bay, Sea of Japan, Biol. Morya, 1987, no. 3, pp. 14-17.

    Google Scholar 

  4. Stonik, I.V. and Orlova T.Yu., Summer-Autumn Phytoplankton in Amursky Bay, the Sea of Japan, Biol. Morya, 1998, vol. 24, pp. 205-211.

    Google Scholar 

  5. Albentosa, M., Perez-Camacho, A., Labarta, U., and Fernandez-Reiriz, M.J., Evaluation of Freeze-Dried Microalgal Diets for the Seed Culture of Ruditapes decussatus Using Physiological and Biochemical Parameters, Aquaculture, 1997, vol. 154, pp. 3-312.

    Google Scholar 

  6. Arts, M.T., Ackman, R.G., Holub, B.J., “Essential Fatty Acids” in Aquatic Ecosystems: A Crucial Link between Diet and Human Health and Evolution, Can J. Fish. Aquat. Sci., 2001, vol. 58, pp. 1-137.

    Google Scholar 

  7. Birkely, S.R., Grahl-Nielsen, O., and Gulliksen, B., Temporal Variations and Anatomical Distributions of Fatty Acids in the Bivalve Mya truncata L. 1758, from Isfjorden, Spitsbergen, Polar Biol., 2003, vol. 26, pp. 83-92.

    Google Scholar 

  8. Bligh, E.G. and Dyer, W.J., A Rapid Method of Total Lipid Extraction and Purification, Can. J. Biochem. Physiol., 1959, vol. 37, pp. 911-917.

    Google Scholar 

  9. Bradshaw, S.A., O'Hara, S.C.M., Corner, E.D.S., and Eglinton, G., Effects of Dietary Lipids of the Marine Bivalve Scorbicularia plana Feeding in Different Modes, J. Mar. Biol. Ass. U.K., 1991, vol. 71, pp. 635-653.

    Google Scholar 

  10. Caers, M., Coutteau P., Lombeida, P., Sorgeloos, P., The Effect of Lipid Supplementation on the Growth and Fatty Acid Composition of Tapes philippinarum (L.) Spat, Aquaculture dy1999, vol. 162, pp. 287-299.

  11. Carreau, J.P. and Dubacq, J.P., Adaptation of Macro-Scale Method to the Micro-Scale for Fatty Acid Methyl Transesterification of Biological Lipid Extracts, J. Chromatogr., 1978, vol. 151, pp. 384-390.

    Google Scholar 

  12. Christie, W.W., Equivalent Chain-Lengths of Methyl Ester Derivatives of Fatty Acids on Gas Chromatography, J. Chromatogr., 1988, vol. 447, pp. 305-314.

    Google Scholar 

  13. Coutteau, P., Caers, M., Mallet, A., Moore, W., and Sorgeloos, P., Effect of Lipid Supplementation on Growth, Survival and Fatty Acid Composition of Bivalve Larvae (Ostrea edulis L. and Mercenaria mercenaria L.), Proc. Bordeaux Aquaculture, CEMAGREF, France, 1994, pp. 213-218.

    Google Scholar 

  14. Graeve, M., Kattner, G., and Hagen, W., Diet-induced Changes in the Fatty Acid Composition of Arctic Herbivorous Copepods: Experimental Evidence of Trophic Markers, J. Exp. Mar. Biol. Ecol., 1994, vol. 182, pp. 97-110.

    Google Scholar 

  15. Guillard, R.R.L and Ryther, J.H., Studies of Marine Planktonic Diatoms. I. Cyclotella nana Hustedt and Detonula confervacea (Cleve) Gran., Can. J. Microbiol., 1962, vol. 8, pp. 229-239.

    Google Scholar 

  16. Hawkins, A.J.S., Smith, R.F.M., Bougrier, S., et al., Manipulation of Dietary Conditions for Maximal Growth in Mussels, Mytilus edulis, from the Marennes-Oleron Bay, France, Aquat. Liv. Res., 1997, vol. 10, pp. 13-22.

    Google Scholar 

  17. Joseph, J.D., Lipid Composition of Marine and Estuarine Invertebrates. Part 2. Mollusca, Progr. Lipid Res., 1982, vol. 21, pp. 109-153.

    Google Scholar 

  18. Kluytmans, J.H., Boot, J.H., Oudejans, R.C.H.M., and Zandee, D.I., Fatty-Acid Synthesis in Relation to Gametogenesis in the Mussel Mytilus edulis L., Comp. Biochem. Physiol., Ser. B, 1985, vol. 81, pp. 959-963.

    Google Scholar 

  19. Lee, R.F., Nevenzel, J.C., and Paffenhofer, G.A., Importance of Wax Esters and Other Lipids in the Marine Food Chain: Phytoplankton and Copepods, Mar. Biol., 1971, vol. 9, pp. 99-108.

    Google Scholar 

  20. Leonardos, N., Lucas, I.A.N., The Use of Larval Fatty Acids as an Index of Growth in Mytilus edulis L. larvae, Aquaculture, 2000, vol. 184, pp. 155-166.

    Google Scholar 

  21. Murphy, K.J., Mooney, B.D., Mann, N.J., et al., Lipid, FA, and Sterol Composition of New Zealand Green Mussel (Perna canaliculus) and Tasmanian Blue Mussel (Mytilus edulis), Lipids, 2002, vol. 37, pp. 587-595.

    Google Scholar 

  22. Paradis, M. and Ackman, R.G., Potential for Employing the Distribution of Anomalous Non-methylene-interrupted Fatty Acids in Several Marine Invertebrates as Part of Food Web Studies, Lipids, 1977, vol. 12, pp. 170-176.

    Google Scholar 

  23. Stromgren, T. and Cary, C., Growth in Length of Mytilus edulis L. Fed on Different Algal Diets, J. Exp. Mar. Biol. Ecol., 1984, vol. 76, pp. 23-34.

    Google Scholar 

  24. Thompson, P.A., Guo, M.-X., and Harrison, P.J., The Influence of Irradiance on the Biochemical Composition of Three Phytoplankon Species and Their Nutritional Value for Larvae of the Pacific Oyster Crassostrea gigas, Mar. Biol., 1993, vol. 117, pp. 259-268.

    Google Scholar 

  25. Vazhappilly, R. and Chen, F., Eicosapentaenoic Acid and Docosahexaenoic Acid Production Potential of Microalgae and Their Heterotrophic Growth, JAOCS, 1998, vol. 75, pp. 393-397.

    Google Scholar 

  26. Watanabe, T. and Ackman, R.G., Lipids and Fatty Acids of the American (Crassostrea virginica) and European Flat (Ostrea edulis) Oyster from a Common Habitat, after One Feeding with Dicrateria inornata or Isochrysis galbana tiJ. Fish. Res. Board Can., 1974, vol. 31, pp. 403-409.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khardin, A.S., Aizdaicher, N.A. & Latyshev, N.A. Changes in the Fatty Acid Composition of Hepatopancreas of the Mollusk Mytilus trossulus Fed on Microalgae. Russian Journal of Marine Biology 29, 378–382 (2003). https://doi.org/10.1023/B:RUMB.0000011706.89867.ec

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:RUMB.0000011706.89867.ec

Navigation