Skip to main content
Log in

Involvement of Sigma S and Sigma 70 Subunits of RNA Polymerase and the CRP Protein in the Regulation of Microcin C51 Operon Expression

  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Expression of the microcin C51 operon in Escherichia coli cells is activated during cell entry into the stationary growth phase and depends on the σS subunit of RNA polymerase (RpoS). The null rpoS mutations retained the residual expression level of the transcriptional Pmcc-lac fusion, which indicates that other sigma subunit can participate in the regulation of transcription of the microcin C51 operon. Data presented in this work show that the overproduction of σ70 in rpoS cells diminished the level of Pmcc-lac expression, as in wild-type cells, which seems to be the consequence of competition between sigma factors for a limited number of core RNA polymerase molecules. In the presence of the rpoD800 mutation that renders σ70 temperature-sensitive, expression of Pmcc-lac was not induced in the phase of delayed culture growth at nonpermissive temperature, which indicates that σ70 is indispensable for microcin operon expression. Point substitutions in the –10 Pmcc region, leading to the formation of 5′-TGaTATAAT-3′ site, enhanced promoter activity but did not affect the relationship between Pmcc-lac transcription and growth phase, σS, and the activator protein CRP. The activator protein CRP was shown to bind a DNA fragment containing the TGTGA(AATGAA)TCTAT site in the –59.5 bp position relative to the start site of transcription. Mutation in the ssr1 gene encoding 6S RNA did not disturb Pmcc-lac expression; these results indicate that 6S RNA does not participate in the regulation of microcin C51 operon expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Kolter, R., Sigele, D.A., and Tormo, A., The Stationary Phase of the Bacterial Life Cycle, Annu. Rev. Microbiol., 1993, vol. 47, pp. 855–874.

    PubMed  Google Scholar 

  2. Ishihama, A., Modulation of the Nucleoid, the Transcription Apparatus, and the Translation Machinery in Bacteria for Stationary Phase Survival, Genes Cells, 1999, vol. 4, pp. 135–143.

    PubMed  Google Scholar 

  3. Hengge-Aronis, R., Signal Transduction and Regulatory Mechanisms Involved in Control of the σS (RpoS) Subunit of RNA Polymerase, Microbiol. Mol. Biol. Rev., 2002, vol. 66, pp. 373–395.

    Article  PubMed  Google Scholar 

  4. Hengge-Aronis, R., Stationary Phase Gene Regulation: What Makes an Escherichia coli Promoter σS Selective?, Curr. Opin. Microbiol., 2002, vol. 5, pp. 591–595.

    PubMed  Google Scholar 

  5. Kurepina, N.E., Basyuk, E.I., Metlitskaya, A.Z., et al., Cloning and Mapping of the Genetic Determinants for Microcin C51 Production and Immunity, Mol. Gen. Genet., 1993, vol. 241, pp. 700–706.

    PubMed  Google Scholar 

  6. Metlitskaya, A.Z., Katrukha, G.S., Shashkov, A.S., et al., Structure of Microcin C51, a New Antibiotic with a Broad Spectrum of Activity, FEBS Lett., 1995, vol. 357, pp. 235–238.

    PubMed  Google Scholar 

  7. Fomenko, D.E., Metlitskaya, A.Z., Peduzzi, J., et al., Microcin C51 Plasmid Genes: Possible Source of Horizon-tal Gene Transfer, Antimicrob. Agents Chemother., 2003, vol. 47, pp. 2868–2874.

    PubMed  Google Scholar 

  8. González-Pastor, J.E., San Millán, J.L., Castilla, M.A., and Moreno, F., Structure and Organization of Plasmid Genes Required to Produce the Translation Inhibitor Microcin C7, J. Bacteriol., 1995, vol. 177, pp. 7131–7140.

    PubMed  Google Scholar 

  9. Loewen, P.C. and Hengge-Aronis, R., The Role of the Sigma Factor σS (KatF) in Bacterial Global Regulation, Annu. Rev. Microbiol., 1994, vol. 48, pp. 53–80.

    PubMed  Google Scholar 

  10. Fomenko, D., Veselovskii, A., and Khmel, I., Regulation of Microcin C51 Operon Expression: the Role of Global Regulators of Transcription, Res. Microbiol., 2001, vol. 152, pp. 469–479.

    PubMed  Google Scholar 

  11. Veselovskii, A.M., Fomenko, D.E., Metlitskaya, A.Z., et al., Properties of the Functioning of the Promoter of the Microcin C51 Operon under Different Conditions of Escherichia coli Cell Growth, Russ. J. Genet., 2001, vol. 37, no. 8, pp. 876–883.

    Google Scholar 

  12. Miller, J.H., Experiments in Molecular Genetics, Cold Spring Harbor, New York: Cold Spring Harbor Lab., 1972.

    Google Scholar 

  13. Silhavy, T.J., Berman, M.L., and Enquist, L.W., Experi-ments with Gene Fusions, Cold Spring Harbor, New York: Cold Spring Harbor Lab., 1984.

    Google Scholar 

  14. Simons, R.W., Houman, F., and Kleckner, N., Improved Single and Multicopy lac-Based Cloning Vectors for Protein and Operon Fusions, Gene, 1987, vol. 53, pp. 85–96.

    PubMed  Google Scholar 

  15. Sambrook, J., Fritsch, E.F., and Maniatis, T., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor, New York: Cold Spring Harbor Lab., 1989.

    Google Scholar 

  16. Brikun, I., Suziedelis, K., Stemmann, O., et al., Analysis of CRP–CytR Interactions at the Escherichia coli udp Promoter, J. Bacteriol., 1996, vol. 178, pp. 1614–1622.

    PubMed  Google Scholar 

  17. Farewell, A., Kvint, K., and Nystrom, T., Negative Regulation by RpoS: A Case of Sigma Factor Competition, Mol. Microbiol., 1998, vol. 29, pp. 1039–1051.

    PubMed  Google Scholar 

  18. Bedwell, D.M. and Nomura, M., Feedback Regulation of RNA Polymerase Subunit Synthesis after the Condi-tional Overproduction of RNA Polymerase in Escheri-chia coli, Mol. Gen. Genet., 1986, vol. 204, pp. 17–23.

    PubMed  Google Scholar 

  19. Jenkins, D.E., Auger, E.A., and Matin, A., Role of RpoH, a Heat Shock Regulator Protein, in Escherichia coli Carbon Starvation Protein Synthesis and Survival, J. Bacte-riol., 1991, vol. 173, pp. 1992–1996.

    Google Scholar 

  20. Grossman, A.D., Straus, D.B., Walter, W.A., and Gross, C.A., σ32 Synthesis Can Regulate the Synthesis of Heat Shock Proteins in Escherichia coli, Genes Dev., 1987, vol. 1, pp. 179–184.

    PubMed  Google Scholar 

  21. Liebke, H., Gross, C., Walter, W., and Burgess, R., A New Mutation rpoD800 Affecting the ΣE. coli RNA Polymerase Is Allelic to Two Other σ Mutants, Mol. Gen. Genet., 1980, vol. 177, pp. 277–282.

    PubMed  Google Scholar 

  22. Ueno-Nishio, S., Backman, K.C., and Magasanik, B., Regulation at the glnL-Operator-Promoter of the Complex glnALG Operon of Escherichia coli, J. Bacteriol., 1983, vol. 153, pp. 1247–1251.

    PubMed  Google Scholar 

  23. Jishage, M., Iwata, A., Ueda, S., and Ishihama, A., Regulation of RNA Polymerase σSubunit Synthesis in Escherichia coli: Intracellular Levels of Four Species of Σ Subunit under Various Growth Conditions, J. Bacte-riol., 1996, vol. 178, pp. 5447–5451.

    Google Scholar 

  24. Wassarman, K.M. and Storz, G., 6S RNA Regulates E. coli RNA Polymerase Activity, Cell (Cambridge, Mass.), 2000, vol. 101, pp. 613–623.

    PubMed  Google Scholar 

  25. Moreno, F., Gσnzalez-Pastor, J.E., Baquero, M.-R., and Bravo, D., The Regulation of Microcin B, C, and J Operons, Biochimie, 2002, vol. 84, pp. 521–529.

    PubMed  Google Scholar 

  26. Kolb, A., Kotlarz, D., Kusano, S., and Ishihama, A., Selectivity of the Escherichia coli RNA Polymerase EΣ38 for Overlapping Promoters and Ability to Support CRP Activation, Nucleic Acids Res., 1995, vol. 23, pp. 819–826.

    PubMed  Google Scholar 

  27. Tanaka, K., Kusano, S., Fujita, N., et al., Promoter Determinants for Escherichia coli RNA Polymerase Holoenzyme Containing σ38 (the rpoS Gene Product), Nucleic Acids Res., 1995, vol. 23, pp. 827–834.

    PubMed  Google Scholar 

  28. Colland, F., Fujita, N., Kotlarz, D., et al., Positioning of σS, the Stationary Phase σFactor, in Escherichia coli RNA Polymerase–Promoter Open Complexes, EMBO J., 1999, vol. 18, pp. 4049–4059.

    PubMed  Google Scholar 

  29. Lee, S.J. and Gralla, J.D., σ38 (RpoS) RNA Polymerase Promoter Engagement via –10 Region Nucleotides, J. Biol. Chem., 2001, vol. 276, pp. 30 064–30 071.

    Google Scholar 

  30. Kumar, A., Malloch, R.A., Fugita, N., et al., The Minus 35-Recognition Region of Escherichia coli σ70 Is Ines-sential for Initiation of Transcription at an “Extended Minus 10” Promoter, J. Mol. Biol., 1993, vol. 232, pp. 406–418.

    PubMed  Google Scholar 

  31. Barne, K.A., Bown, J.A., Busby, J.W., and Minchin, S.D., Region 2.5 of the Escherichia coli RNA Polymerase σ70 Subunit Is Responsible for the Recognition of the “Extended –10” Motif at Promoters, EMBO J., 1997, vol. 16, pp. 4034–4040.

    PubMed  Google Scholar 

  32. Burr, T., Mitchell, J., Kolb, A., et al., DNA Sequence Elements Located Immediately Upstream of the –10 Hexamer in Escherichia coli Promoters: A Systematic Study, Nucleic Acids Res., 2000, vol. 28, pp. 1864–1870.

    PubMed  Google Scholar 

  33. Wise, A., Brems, R., Ramakrishnan, V., and Villarejo, M., Sequences in the –35 Region of Escherichia coli RpoS-Dependent Genes Promote Transcription by? σS, J. Bacteriol., 1996, vol. 178, pp. 2785–2793.

    PubMed  Google Scholar 

  34. Bordes, P., Repoila, F., Kolb, A., and Gutierres, C., Involvement of Differential Efficiency of Transcription by EσS and Eσ70 RNA Polymerase Holoenzymes in Growth Phase Regulation of the Escherichia coli osmE Promoter, Mol. Microbiol., 2000, vol. 35, pp. 845–853.

    PubMed  Google Scholar 

  35. Kolb, A., Busby, S., Buc, H., et al., Transcriptional Regulation by cAMP and Its Receptor Protein, Annu. Rev. Biochem., 1993, vol. 62, pp. 749–795.

    PubMed  Google Scholar 

  36. Lonetto, M., Gribskov, M., and Gross, C.A., The σ70 Family: Sequence Conservation and Evolutionary Relationships, J. Bacteriol., 1992, vol. 174, pp. 3843–3849.

    PubMed  Google Scholar 

  37. Schellhorn, H.E., Audia, J.P., Wei, L.I.C., and Chang, L., Identification of Conserved, RpoS-Dependent Station-ary-Phase Genes of Escherichia coli, J. Bacteriol., 1998, vol. 180, pp. 6283–6291.

    PubMed  Google Scholar 

  38. Altuvia, S., Almiron, M., Huisman, G., et al., The dps Promoter Is Activated by OxyR during Growth and by IHF and σS in Stationary Phase, Mol. Microbiol., 1994, vol. 13, pp. 265–272.

    PubMed  Google Scholar 

  39. Olsén, A., Arnqvist, A., Hammar, M., et al., The RpoS σ Factor Relieves H-NS-Mediated Transcriptional Repression of csgA, the Subunit Gene of Fibronectin-Binding Curli in Escherichia coli, Mol. Microbiol., 1993, vol. 7, pp. 523–536.

    PubMed  Google Scholar 

  40. Lange, R., Barth, M., and Hengge-Aronis, R., Complex Transcriptional Control of the σS-Dependent Stationary-Phase-Induced and Osmotically Regulated osmY (csi-5) Gene Suggests Novel Roles for Lrp, Cyclic AMP (cAMP) Receptor Protein–cAMP Complex, and Integra-tion Host Factor in the Stationary-Phase Response of Escherichia coli, J. Bacteriol., 1993, vol. 175, pp. 7910–7917.

    PubMed  Google Scholar 

  41. Kvint, K., Hosbond, C., Farewell, A., et al., Emergency Derepression: Stringency Allows RNA Polymerase to Override Negative Control by an Active Repressor, Mol. Microbiol., 2000, vol. 35, pp. 435–443.

    PubMed  Google Scholar 

  42. Colland, F., Barth, M., Hengge-Aronis, R., and Kolb, A., Factor Selectivity of Escherichia coli RNA Polymerase: Role for CRP, IHF and Lrp Transcription Factors, EMBO J., 2000, vol. 19, pp. 3028–3037.

    PubMed  Google Scholar 

  43. Maeda, H., Fujita, N., and Ishihama, A., Competition among Seven Escherichia coli σSubunits: Relative Binding Affinities to the Core RNA Polymerase, Nucleic Acids Res., 2000, vol. 28, pp. 3497–3503.

    PubMed  Google Scholar 

  44. Conter, A., Menchon, C., and Gutierrez, C., Role of DNA Supercoiling and RpoS σFactor in the Osmotic and Growth Phase-Dependent Induction of the Gene osmE of Escherichia coli K12, J. Mol. Biol., 1997, vol. 273, pp. 75–83.

    PubMed  Google Scholar 

  45. Santos, J.M., Freire, P., Vicente, M., and Arraiano, C.M., The Stationary-Phase Morphogene bolA from Escheri-chia coli Is Induced by Stress during Early Stages of Growth, Mol. Microbiol., 1999, vol. 32, pp. 789–798.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Veselovskii, A.M., Bass, I.A., Zolotukhina, M.A. et al. Involvement of Sigma S and Sigma 70 Subunits of RNA Polymerase and the CRP Protein in the Regulation of Microcin C51 Operon Expression. Russian Journal of Genetics 40, 1199–1209 (2004). https://doi.org/10.1023/B:RUGE.0000048661.42211.a0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:RUGE.0000048661.42211.a0

Keywords

Navigation