Skip to main content
Log in

Chromosome Maps of Trilliaceae: II. A Study of the Genome Composition in Polyploid Species of the Genus Trillium by Fluorescence Nucleotide Base-Specific Staining of Heterochromatic Chromosome Regions

  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Chromosome banding with nucleotide base-specific fluorochromes chromomycin A3 (CMA) and Hoechst 33258 (H33258) was used to study the karyotypes and to construct cytological maps for diploidTrillium camschatcense(2n = 10), tetraploid T. tschonoskii(2n = 20), hexaploidT. rhombifolium (2n = 30), and a triploid T. camschatcense × T. tschonoskii hybrid (T. × hagae, 2n = 15). With H33258, species- and genome-specific patterns with numerous AT-rich heterochromatin bands were obtained for each of the four forms; CMA revealed a few small, mostly telomeric GC-rich bands. In T. tschonoskii, the two subgenomes were similar to each other and differed from the T. camschatcense genome; on this evidence, the species was considered to be a segmental allotetraploid. InT. ×hagae, one T. camschatcense and both T. tschonoskii subgenomes were identified. The subgenomes of T. rhombifoliumonly partly corresponded to the T. camschatcense and T. tschonoskii genomes, in contrast to the morphologically identical Japanese species T. hagae. This was assumed to indicate that allohexaploids T. rhombifolium and T. hagae originated independently at different times; i.e., their origin is polyphyletic. Based on the chromosome maps, a new nomenclature was proposed for theTrillium genomes examined: K1K1 for T. camschatcense,T1T1T2T2 for T. tschonoskii,K1T1T2 for T. × hagae, and K1RK1RT1RT1RT2RT2R for T. rhombifolium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Ingle, J., Timmis, J.N., and Sinclair, J., Relationship between Satellite Deoxyribonucleic Acid, Ribosomal Ribonucleic Acid Gene Redundancy, and Genome Size in Plants, Plant Physiol., 1975, vol. 55, pp. 496-501.

    Google Scholar 

  2. Grif, V.G., Valovich, E.M., and Lebedeva, N.V., Parameters of the Mitotic Cycle in Two Species of the Genus TrilliumL., Tsitologiya, 1980, vol. 22, no. 11, pp. 1331-1338.

    Google Scholar 

  3. Chase, M.W., Duvall, M.R., Hills, H.G., et al., Molecular Phylogenetics of Lilianae, Monocotyledons: Systematics and Evolution, Rudall, P.J., Cribb, D.F., Cutler, C.J., and Humphries, C.J., Ed., Kew: Royal Botanical Gardens, 1995, pp. 109-137.

    Google Scholar 

  4. Shmargon’, E.N., Analysis of the Chromomere Structures of Rye Mitotic Chromosomes, Dokl. Akad. Nauk SSSR, 1938, vol. 21, no. 5, pp. 259-261.

  5. Kakhidze, N.G., Chromosome Structure of Crepis capillaris, Dokl. Akad. Nauk SSSR, 1939, vol. 22, no. 7, pp. 451-452.

    Google Scholar 

  6. Darlington, C.D. and LaCour, L., Nucleic Acid Starvation of Chromosomes in Trillium, J. Genet., 1940, vol. 49, nos. 1-2, pp. 185-213.

    Google Scholar 

  7. Haga, T. and Kurabayashi, M., Genome and Polyploidy in the Genus Trillium: IV. Genome Analysis by Means of Differential Reaction of Chromosome Segments to Low Temperature, Cytologia, 1953, vol. 18, no. 1, pp. 13-28.

    Google Scholar 

  8. Haga, T. and Kurabayashi, M., Genome and Polyploidy in the Genus Trillium:V. Chromosomal Variation in Natural Populations of Trillium kamtschaticumPall., Memoirs of the Faculty of Science, Kyushu University. Ser. E. (Biology), 1954, vol. 1, pp. 159-185.

    Google Scholar 

  9. Kurabayashi, M., Evolution and Variation in Trillium: IV. Chromosomal Variation in Natural Population of Trillium kamtschaticum, Pall., Jpn. J. Bot., 1957, vol. 16, no. 1, pp. 1-45.

    Google Scholar 

  10. Haga, T., Structure and Dynamics of Natural Populations of a Diploid Trillium, Chromosome Today, 1969, vol. 2, pp. 207-217.

    Google Scholar 

  11. Fukuda, I. and Kozuka, Y., Evolution and Variation in Trillium: V. A List of Chromosome Composition in Natural Populations of Trillium kamtschaticumPall., J. Fac. Sci. Hokkaido Univ. Ser. V, Bot., 1958, vol. 6, pp. 23-31.

    Google Scholar 

  12. Fukuda, I., Comparitive Study of Chromosome Variation in the Japanese and American TrilliumSpecies, Sci. Reports Tokyo Woman’s Christian Univ., 1973, nos. 29-31, pp. 361-367.

  13. Haga, T., Genome and Polyploidy in the Genus Trillium: III. Origin of the Polyploid Species, Cytologia, 1951, vol. 16, no. 3, pp. 242-258.

    Google Scholar 

  14. Haga, T., Genome and Polyploidy in the Genus Trillium: VI. Hybridization and Speciation by Chromosome Doubling in Nature, Heredity, 1956, vol. 10, no. 1, pp. 85-98.

    Google Scholar 

  15. Suzuki, K., Variation of External Morphology in Natural Populations of Trillium, Organic Evol., 1954, vol. 1, pp. 45-51.

    Google Scholar 

  16. Saho, T. and Kurabayashi, M., Genome Affinity and the Process of Speciation in the Genus Trillium, Organic Evol., 1956, vol. 3, pp. 74-87.

    Google Scholar 

  17. Samejima, J. and Samejima, K., Studies on the Eastern Asiatic Trillium(Liliaceae), Acta Horti Gotoburgensis, 1962, vol. 25, pp. 157-257.

    Google Scholar 

  18. Komarov, V.L., Flora SSSR (Flora of the Soviet Union), Moscow: Akad. Nauk SSSR, 1935, vol. 4, pp. 748-749.

    Google Scholar 

  19. Belyayev, A., Punina, E., and Grif, V., Intrapopulation and Individual Polymorphism of Heterochromatin Segments in Trillium camschatcenseKer-Gawl., Caryologia, 1995, vol. 48, pp. 157-164.

    Google Scholar 

  20. Punina, E.O., Myakoshina, Yu.A., Efimov, A.M., and Rodionov, A.V., Chromosome Maps of Trilliaceae Plants: Heterochromatin Nucleotide Composition and Mapping of 18S-26S rRNA Genes in Paris Guadrifolia L., Genetika (Moscow), 2000, vol. 36, no. 5, pp. 673-677.

    Google Scholar 

  21. Punina, E.O., Rodionov, A.V., Myakoshina, Yu.A., and Grif, V.G., Nucleotide Composition of the Cold-Sensitive Heterochromatic Regions in Paris hainanensisMerrill, Genetika (Moscow), 2001, vol. 37, no. 7, pp. 939-946.

    Google Scholar 

  22. Schweizer, D., Reverse Fluorescent Chromosome Banding with Chromomycin and DAPI, Chromosoma, 1976, vol. 58, pp. 307-324.

    Google Scholar 

  23. Schweizer, D. and Ambros, P.F., Chromosome Banding, Methods in Molecular Biology, vol. 29: Chromosome Analysis Protocols, Gosden, J.R., Ed., Totowa, New York: Humana, 1994, pp. 97-112.

    Google Scholar 

  24. Muravenko, O., Fedotov, A., Punina, E., et al., Comparison of BrdU-Hoechst-Giemsa Chromosome Banding Patterns of A1 and AbDb Cotton Genomes, Genome, 1998, vol. 41, pp. 616-625.

    Google Scholar 

  25. Punina, E.O., Muravenko, O.V., and Belyaev, A.A., Development and Use of Computer Programs of Chromosome Analysis, Tsitologiya, 1999, vol. 41, no. 12, pp. 1077-1078.

    Google Scholar 

  26. Haga, T., The Comparative Morphology of the Chromosome Complement in the Tribe Parideae, J. Fac. Sci., Hokkaido Imper. Univ. Ser. 5, 1934, vol. 3, no. 1, pp. 1-32.

    Google Scholar 

  27. Myakoshina, Yu.A., Punina, E.O., and Rodionov, A.V., Detection of Transcriptionally Active Nucleolus-Organizing Regions in Karyotypes of Plants of the Family Trilliaceae by Ag-NOR Staining, Tsitologiya, 2002, vol. 44, no. 9, pp. 894-895.

    Google Scholar 

  28. Grif, V.G., Ketrits, L.M., and Cherepanov, S.K., A Karyotaxonomic Study of Trillium rhombifoliumKom. (Liliaceae) from Southern Primorye, Bot. Zh., 1977, vol. 62, no. 11, pp. 1639-1647.

    Google Scholar 

  29. Sveshnikova, L.I. and Grif, V.G., Use of Methods Revealing Heterochromatin Regions of Chromosomes in Comparative Studies of Plant Karyotypes, Bot. Zh., 1981, vol. 66, no. 4, pp. 494-501.

    Google Scholar 

  30. Takehisa, S. and Utsumi, S., Heterochromatin and Giemsa Banding of Metaphase Chromosomes in Trillium kamtschaticumPall., Nature, 1973, vol. 243, no. 130, pp. 286-287.

    Google Scholar 

  31. Grif, V.G., Cherepanov, S.K., Valovich, E.M., and Belyaeva, N.N., Biological Systematics of Several Species of the Genus Trillium(Trilliaceae) from the Soviet Union, Bot. Zh., 1985, vol. 70, no. 9, pp. 1177-1186.

    Google Scholar 

  32. Uchino, A., Structure and Dynamics of Natural Populations of Polyploid Trillium: III. A Tetraploid Species Trillium tschonoskiiMaximowicz, Jpn. J. Genet., 1985, vol. 60, no. 6, pp. 545-555.

    Google Scholar 

  33. Uchino, A., Chromosomal Variation in the K2T Genome Complex of Polypoid Trillium, Jpn. J. Genet., 1985, vol. 60, no. 6, pp. 557-564.

    Google Scholar 

  34. Miyabe, K. and Tatewaki, M., Contributions to the Flora of Northern Japan, Trans. Sapporo Nat. Hist. Soc., 1936, vol. 7, pp. 189-190.

    Google Scholar 

  35. Sokolovskaya, A.P., Geographic Distribution of Polyploid Plant Species: Examination of Flora of the Primorskii Krai, Vestn. Leningrad. Gos. Univ, Ser. Biol., 1966, vol. 1, no. 3, pp. 92-106.

    Google Scholar 

  36. Rodionov, A.V., Punina, E.O., Efimov, A.M., et al., Mapping of the Plant 18S, 5.8S, and 26S rRNA Genes by Fluorescence in Situ Hybridization, Tsitologiya, 1999, vol. 41, no. 12, pp. 1079-1080.

    Google Scholar 

  37. Haga, T., Genome and Polyploidy in the Genus Trillium; I. Chromosome Affinity between the Genomes, Jpn. J. Genet., 1937, vol. 13, nos. 3-4, pp. 135-145.

    Google Scholar 

  38. Kurabayashi, M., Evolution and Variation in Japanese Species of Trillium, Evolution, 1958, vol. 3, no. 12, pp. 286-310.

    Google Scholar 

  39. Grant, V., Plant Speciation, New York: Columbia Univ., 1981.

    Google Scholar 

  40. Shkutina, F.M., Meiosis in Distant Hybrids and Amphidiploids, Tsitologiya i genetika meioza (Cytology and Genetics of Meiosis), Moscow: Nauka, 1975, pp. 292-311.

    Google Scholar 

  41. Haga, T., Geographical Distribution of Trilliaceous Plants in Relation to Polyploidy, Jpn. J. Genet., 1942, vol. 18, nos. 3-4, pp. 168-171.

    Google Scholar 

  42. Fukuda, I., Freeman, J.D., and Ito, M., Trillium channellii, sp.nov. (Trilliaceae), in Japan, and T. camschatcenseKer Gawler, Correct Name for the Asiatic Diploid Trillium, Novon(J. Bot. Nomenclature), 1996, vol. 6, no. 2, pp. 164-171.

    Google Scholar 

  43. Soltis, P.S. and Soltis, D.E., The Role of Genomic Attributes in the Success of Polyploids, Proc. Natl. Acad. Sci. USA, 2000, vol. 97, pp. 7051-7057.

    Google Scholar 

  44. Bailey, P.C., Differential Reactivity in Chromosomes as an Indicator of Species in Trillium, Bot. Gaz., 1954, vol. 115, no. 3, pp. 241-248.

    Google Scholar 

  45. Darlington, C.D., Polyploidy, Crossing Over, and Heterochromatinin Paris, Ann. Bot. N. S., 1941, vol. 5, no. 18, pp. 203-216.

    Google Scholar 

  46. Kurabayashi, M., Karyotype Differentiation in Trillium sessileand T. ovatumin the Western United States, Evolution, 1963, vol. 17, no. 3, pp. 296-306.

    Google Scholar 

  47. Smith, M.C. and Ingram, R., Heterochromatin Banding in the Genus Paris, Genetica (The Hague), 1986, vol. 71, pp. 141-145.

    Google Scholar 

  48. Miyamoto, J., Kurita, S., Gu, Z., and Li, H., C-Banding Patterns in Eighteen Taxa of the Genus Paris sensuLi, Liliaceae, Cytologia, 1992, vol. 57, no. 2, pp. 191-194.

    Google Scholar 

  49. Uchino, A. and Wang, L., Comparison of Cold-Sensitive and C-Banded Segments of Chromosomes in Paris tetraphyllaA. Gray, Cytologia, 1996, vol. 61, no. 3, pp. 321-325.

    Google Scholar 

  50. Badaeva, E.D., Genome Evolution in Wheats and Their Wild Relatives: A Molecular Cytogenetic Study, Doctoral (Biol.) Dissertation, Moscow, 2000.

  51. Navratilova, A., Neumann, P., and Macas, J., Karyotype Analysis of Four ViciaSpecies Using in Situ Hybridization with Repetitive Sequences, Ann. Bot., 2003, vol. 91, no. 7, pp. 921-926.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Myakoshina, Y.A., Punina, E.O., Grif, V.G. et al. Chromosome Maps of Trilliaceae: II. A Study of the Genome Composition in Polyploid Species of the Genus Trillium by Fluorescence Nucleotide Base-Specific Staining of Heterochromatic Chromosome Regions. Russian Journal of Genetics 40, 882–891 (2004). https://doi.org/10.1023/B:RUGE.0000039722.20093.bd

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:RUGE.0000039722.20093.bd

Keywords

Navigation