Advertisement

Russian Journal of Genetics

, Volume 40, Issue 5, pp 478–484 | Cite as

Characterization of Missense Mutations in the SUP45 Gene of Saccharomyces cerevisiaeEncoding Translation Termination Factor eRF1*

  • S. E. Moskalenko
  • G. A. Zhouravleva
  • M. Y. Soom
  • S. V. Chabelskaya
  • K. V. Volkov
  • O. M. Zemlyanko
  • M. Philippe
  • L. N. Mironova
  • S. G. Inge-Vechtomov
Article

Abstract

Collection of missense mutations in the SUP45 gene of Saccharomyces cerevisiae encoding translation termination factor eRF1 has been obtained by different approaches. It has been shown that most of isolated mutations cause amino acid substitutions in the N-terminal part of eRF1 and do not decrease the eRF1 amount. Most of mutations studied do not abolish eRF1–eRF3 interaction. The role of the N-terminal part of eRF1 in stop codon recognition is discussed.

Keywords

Saccharomyces Cerevisiae Stop Codon Missense Mutation Amino Acid Substitution Termination Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Frolova, L., Le Goff, X., Rasmussen, H.H., et al., A Highly Conserved Eukaryotic Protein Family Possessing Properties of Polypeptide Chain Release Factor, Nature, 1994, vol. 372, pp. 701-703.Google Scholar
  2. 2.
    Stansfield, I., Jones, K.M., Kushnirov, V.V., et al., The Products of the SUP45 (eRF1) and SUP35 Genes Interact to Mediate Translation Termination in Saccharomyces cerevisiae, EMBO J., 1995, vol. 14, pp. 4365-4373.Google Scholar
  3. 3.
    Zhouravleva, G., Frolova, L., Le Goff, X., et al., Termination of Translation in Eukaryotes Is Governed by Two Interacting Polypeptide Chain Release Factors, eRF1 and eRF3, EMBO J., 1995, vol. 14, pp. 4065-4072.Google Scholar
  4. 4.
    Milman, G., Goldstein, J., Scolnick, E., and Caskey, T., Peptide Chain Termination: 3. Stimulation of in Vitro Termination, Proc. Natl. Acad. Sci. USA, 1969, vol. 63, pp. 183-190.Google Scholar
  5. 5.
    Ito, K., Ebihara, K., Uno, M., and Nakamura, M., Conserved Motifs in Prokaryotic and Eukaryotic Polypeptide Release Factors: tRNA-Protein Mimicry Hypothesis, Proc. Natl. Acad. Sci. USA, 1996, vol. 93, pp. 5453-5458.Google Scholar
  6. 6.
    Ito, K., Uno, M., and Nakamura, Y., A Tripeptide “Anticodon” Deciphers Stop Codons in Messenger RNA, Nature, 2000, vol. 403, pp. 680-684.Google Scholar
  7. 7.
    Vestergaard, B., Van, L.B., Andersen, G.R., et al., Bacterial Polypeptide Release Factor RF2 Is Structurally Distinct from Eukaryotic eRF1, Mol. Cell, 2001, vol. 8, pp. 1375-1382.Google Scholar
  8. 8.
    Rawat, U.B., Zavialov, A.V., Sengupta, J., et al., A Cryo-Electron Microscopic Study of Ribosome-Bound Termination Factor RF2, Nature, 2003, vol. 421, pp. 87-90.Google Scholar
  9. 9.
    Bertram, G., Bell, H.A., Ritchie, D.W., et al., Terminating Eukaryote Translation: Domain 1 of Release Factor eRF1 Functions in Stop Codon Recognition, RNA, 2000, vol. 6, pp. 1236-1247.Google Scholar
  10. 10.
    Chavatte, L., Seit-Nebi, A., Dubovaya, V., and Favre, A., The Invariant Uridine of Stop Codons Contacts the Conserved NIKSR Loop of Human eRF1 in the Ribosome, EMBO J., 2002, vol. 21, pp. 5302-5311.Google Scholar
  11. 11.
    Inge-Vechtomov, S.G. and Andrianova, V.M., Recessive Super-Suppressors in Yeasts, Genetika (Moscow), 1970, vol. 6, pp. 103-115.Google Scholar
  12. 12.
    Zakharov, I.A., Kozhin, S.A., Kozhina, T.N., and Fedorova, I.V., Sbornik metodik po genetike drozhzhei-sakharomitsetov (Methods of the Genetics of Saccharomycetes), Leningrad: Nauka, 1984.Google Scholar
  13. 13.
    Sherman, F., Fink, G.R., and Hincks, J.B., Methods in Yeast Genetics, Cold Spring Harbor, New York: Cold Spring Harbor Lab., 1986.Google Scholar
  14. 14.
    Gietz, D., St. Jean, A., Woods, R.A., and Schiestl, R.H., Improved Method for High Efficiency Transformation of Intact Yeast Cells, Nucleic Acids Res., 1992, vol. 20, pp. 1425-1431.Google Scholar
  15. 15.
    Fields, S. and Song, O., A Novel Genetic System to Detect Protein-Protein Interactions, Nature, 1989, vol. 340, pp. 245-246.Google Scholar
  16. 16.
    Feilotter, H.E., Hannon, G.J., Ruddell, C.J., and Beach, D., Construction of an Improved Host Strain for Two-Hybrid Screening, Nucleic Acids Res., 1994, vol. 22, pp. 1502-1503.Google Scholar
  17. 17.
    Le Goff, X., Philippe, M., and Jean-Jean, O., Overexpression of Human Release Factor 1 Alone Has an Anti-suppressor Effect in Human Cells, Mol. Cell. Biol., 1997, vol. 17, pp. 3164-3172.Google Scholar
  18. 18.
    Cosson, B., Couturier, A., Chabelskaya, S., et al., Poly(A)-Binding Protein Acts in Translation Termination via Eukaryotic Release Factor 3 Interaction and Does Not Influence [PSI +] Propagation, Mol. Cell. Biol., 2002, vol. 22, pp. 3301-3315.Google Scholar
  19. 19.
    Moskalenko, S.E., Chabelskaya, S.V., Inge-Vechtomov, S.G., et al., Viable Nonsense Mutants for Essential Gene SUP45 of Saccharomyces cerevisiae, BMC Mol. Biol., 2003, vol. 4,no. 2.Google Scholar
  20. 20.
    Didichenko, S.A., Ter-Avanesyan, M.D., and Smirnov, V.N., Ribosome-Bound EF-1α-like Protein of Yeast Saccharomyces cerevisiae, Eur. J. Biochem., 1991, vol. 198, pp. 705-711.Google Scholar
  21. 21.
    Laemmli, U.K., Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4, Nature, 1970, vol. 227, pp. 680-685.Google Scholar
  22. 22.
    Towbin, H., Staehelin, T., and Gordon, J., Electrophoretic Transfer of Proteins from Polyacrylamide Gels to Nitrocellulose Sheets: Procedure and Some Applications, Proc. Natl. Acad. Sci. USA, 1979, vol. 76, pp. 4350-4354.Google Scholar
  23. 23.
    Breining, P. and Piepersberg, W., Yeast Omnipotent Suppressor SUP1 (SUP45): Nucleotide Sequence of the Wild-Type and a Mutant Gene, Nucleic Acids Res., 1986, vol. 11, pp. 5187-5197.Google Scholar
  24. 24.
    Mironova, L.N., Samsonova, M.G., Zhouravleva, G.A., et al., Reversions to Respiratory Competence of Omnipotent sup45 Suppressor Mutants May Be Caused by Secondary sup45 Mutations, Curr. Genet., 1995, vol. 27, pp. 195-200.Google Scholar
  25. 25.
    Beier, H. and Grimm, M., Misreading of Termination Codons in Eukaryotes by Natural Nonsense Suppressor tRNAs, Nucleic Acids Res., 2001, vol. 29, pp. 4767-4782.Google Scholar
  26. 26.
    Song, H., Mugnier, P., Das, A.K., et al., The Crystal Structure of Human Eukaryotic Release Factor eRF1: Mechanism of Stop Codon Recognition and Peptidyl-tRNA Hydrolysis, Cell (Cambridge, Mass.), 2000, vol. 100, pp. 311-321.Google Scholar
  27. 27.
    Frolova, L.Y., Tsivkovskii, R.Y., Sivolobova, G.F., et al., Mutations in the Highly Conserved GGQ Motif of Class 1 Polypeptide Release Factors Abolish the Ability of Human eRF1 to Trigger Peptidyl-tRNA Hydrolysis, RNA, 1999, vol. 5, pp. 1014-1020.Google Scholar
  28. 28.
    Ito K., Ebihara, K., and Nakamure, Y., The Stretch of C-Terminal Acidic Amino Acids of Translational Release Factor eRF1 Is a Primary Binding Site for eRF3 of Fission Yeast, RNA, 1998, vol. 4, pp. 958-972.Google Scholar
  29. 29.
    Cox, B.S., Allosuppressors in Yeast, Genet. Res., 1977, vol. 30, pp. 187-205.Google Scholar

Copyright information

© MAIK “Nauka/Interperiodica” 2004

Authors and Affiliations

  • S. E. Moskalenko
    • 1
    • 2
  • G. A. Zhouravleva
    • 1
    • 2
  • M. Y. Soom
    • 1
  • S. V. Chabelskaya
    • 1
    • 2
  • K. V. Volkov
    • 1
  • O. M. Zemlyanko
    • 1
  • M. Philippe
    • 2
  • L. N. Mironova
    • 1
  • S. G. Inge-Vechtomov
    • 1
  1. 1.Department of Genetics and BreedingSt. Petersburg State UniversitySt. PetersburgRussia
  2. 2.University Rennes I, UMR 6061France

Personalised recommendations