Skip to main content
Log in

SOS-Inducible DNA Polymerases and Adaptive Mutagenesis

  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Stability of genomes of living organisms is maintained by various mechanisms that ensure high fidelity of DNA replication. However, cells can reversibly enhance the level of replication errors in response to external factors. As mutable states are potentially involved in carcinogenesis, aging, and resistance for pathogenic agents, the existence of these states is of great importance for human health. A well-known system of inducible mutation is SOS response, whose key component is replication of damaged DNA regions. Inducible mutation implies a contribution of SOS response to the adaptation of a bacterial population to adverse environments. There is ample evidence indicating the primary role of SOS response genes in the phenomenon of adaptive mutation. The involvement of the SOS system in adaptive mutagenesis is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Cairns, J., Overbaugh, J., and Miller, S., The Origin of Mutants, Nature, 1988, vol. 335, pp. 142-145.

    Google Scholar 

  2. Riesenfeld, C., Everett, M., Piddock, L.J., and Hall, B.G., Adaptive Mutations Produce Resistance to Ciprofloxacin, Antimicrob. Agents Chemother., 1997, vol. 41, pp. 2059-2060.

    Google Scholar 

  3. Hall, B.G., Adaptive Mutations in E. coli as a Model for the Multiple-Mutational Origins of Tumors, Proc. Natl. Acad. Sci. USA, 1995, vol. 92, pp. 5669-5673.

    Google Scholar 

  4. Strauss, B.S., Hypermutability in Carcinogenesis, Genetics, 1998, vol. 148, pp. 1619-1626.

    Google Scholar 

  5. Cairns, J. and Foster, P.L., Adaptive Reversion of a Frameshift Mutation in Escherichia coli, Genetics, 1991, vol. 128, pp. 695-701.

    Google Scholar 

  6. Foster, P.L., Population Dynamics of a Lac Strain of Escherichia coli during Selection for Lactose Utilization, Genetics, 1994, vol. 138, pp. 253-261.

    Google Scholar 

  7. Gellert, M., Recent Advances in Understanding V(D)J Recombination, Adv. Immunol., 1997, vol. 64, pp. 39-64.

    Google Scholar 

  8. Maizels, N., Immunoglobulin Class Switch Recombination: Will Genetics Provide New Clues to Mechanism?, Am. J. Hum. Genet., 1999, vol. 64, pp. 1270-1275.

    Google Scholar 

  9. Harris, R.S., Longerich, S., and Rosenberg, S.M., Recombination in Adaptive Mutation, Science, 1994, vol. 264, pp. 258-260.

    Google Scholar 

  10. Harris, R.S., Ross, K.J., and Rosenberg, S.M., Opposing Roles of the Holliday Junction Processing Systems of Escherichia coli in Recombination-Dependent Adaptive Mutation, Genetics, 1996, vol. 142, pp. 681-691.

    Google Scholar 

  11. Foster, P.L., Trimarchi, J.M., and Maurer, R.A., Two Enzymes, Both of Which Process Recombination Intermediates, Have Opposite Effects on Adaptive Mutation in Escherichia coli, Genetics, 1996, vol. 142, pp. 25-37.

    Google Scholar 

  12. Chaudhury, A.M. and Smith, G.R., Role of Escherichia coli RecBC Enzyme in SOS Induction, Mol. Gen. Genet., 1985, vol. 201, pp. 525-528.

    Google Scholar 

  13. Friedberg, E.C., Walker, G.C., and Siede, W., DNA Repair and Mutagenesis, Washington, DC: Am. Soc. Microbiol., 1995, pp. 407-522.

    Google Scholar 

  14. Seigneur, M., Bidnenko, V., Ehrlich, S.D., and Michel, B., RuvAB Acts at Arrested Replication Forks, Cell (Cambridge, Mass.), 1998, vol. 95, pp. 419-430.

    Google Scholar 

  15. Galitski, T. and Roth, J.R., A Search for a General Phenomenon of Adaptive Mutability, Genetics, 1996, vol. 143, pp. 645-659.

    Google Scholar 

  16. Gizatullin, F.S. and Babynin, E.V., The Selection-Induced His+ Reversion in Salmonella typhimurium, Mutat. Res., 1996, vol. 357, pp. 43-56.

    Google Scholar 

  17. Hall, B.G., Genetics of Selection-Induced Mutations: I. uvrA, uvrB, uvrC, and uvrD Are Selection-Induced Specific Mutator Loci, J. Mol. Evol., 1995, vol. 40, pp. 86-93.

    Google Scholar 

  18. Foster, P.L. and Trimarchi, J.M., Adaptive Reversion of an Episomal Frameshift Mutation in Escherichia coli Requires Conjugal Functions but Not Actual Conjugation, Proc. Natl. Acad. Sci. USA, 1995, vol. 92, pp. 5487-5490.

    Google Scholar 

  19. Radicella, J.P., Park, P.U., and Fox, M.S., Adaptive Mutation in Escherichia coli: A Role for Conjugation, Science, 1995, vol. 268, pp. 418-420.

    Google Scholar 

  20. Kenyon, C.J. and Walker, G.C., Expression of the E. coli uvrA Gene Is Inducible, Nature, 1981, vol. 279, pp. 808-810.

    Google Scholar 

  21. Fogliano, M. and Schendel, P.F., Evidence for the Inducibility of the uvrB Operon, Nature, 1981, vol. 289, pp. 196-198.

    Google Scholar 

  22. Eisenstadt, E., Miller, J.K., Kahng, L.S., and Barnes, W.M., Influence of uvrB and pKM101 on the Spectrum of Spontaneous, UV-and γ-Ray-Induced Base Substitutions That Revert hisG46 in Salmonella typhimurium, Mutat. Res., 1989, vol. 210, pp. 113-125.

    Google Scholar 

  23. Gizatullin, F.S. and Lyozin, G.T., The Origin of His+ Revertants of Salmonella typhimurium Obtained on Selective Medium, Res. Microbiol., 1992, vol. 143, pp. 711-719.

    Google Scholar 

  24. Timms, A.R., Muriel, W., and Bridges, B.A., A UmuD,C-Dependent Pathway for Spontaneous G:C to C:G Transversions in Stationary Phase Escherichia coli mutY, Mutat. Res., 1999, vol. 435, pp. 77-80.

    Google Scholar 

  25. Gizatullin, F.Sh., Lezin, G.T., and Babynin, E.V., Starvation-Induced Mutagenesis in Salmonella typhimurium, Genetika (Moscow), 1995, vol. 31,no. 10, pp. 1380-1385.

    Google Scholar 

  26. Blanco, M., Herrera, G., and Aleixandre, V., Different Efficiency of UmuDC and MucAB Proteins in UV Light-Induced Mutagenesis in Escherichia coli, Mol. Gen. Genet., 1986, vol. 205, pp. 234-239.

    Google Scholar 

  27. Urios, A., Herrera, G., Alixandre, V., et al., Mutability of Salmonella Tester Strains TA1538 (hisD3052) and TA1535 (hisG46) Containing the UmuD' and UmuC Proteins of Escherichia coli, Environ. Mol. Mutagen., 1994, vol. 23, pp. 281-285.

    Google Scholar 

  28. Foster, P.L., Adaptive Mutation: Has the Unicorn Landed?, Genetics, 1998, vol. 30, pp. 1453-1459.

    Google Scholar 

  29. McKenzie, G.J., Harris, R.S., Lee, P.L., and Rosenberg, S.M., The SOS Response Regulates Adaptive Mutation, Proc. Natl. Acad. Sci. USA, 2000, vol. 97,no. 12, pp. 6646-6651.

    Google Scholar 

  30. Witkin, E.M. and Wermundsen, I.E., Targeted and Untargeted Mutagenesis by Various Inducers of SOS Functions in Escherichia coli, Cold Spring Harbor Symp. Quant. Biol., 1979, vol. 43, part 2, pp. 881-886.

    Google Scholar 

  31. Tessman, E.S., Tessman, I., Peterson, P.K., and Forestal, J.D., Roles of RecA Protease and Recombinase Activities of Escherichia coli in Spontaneous and UV-Induced Mutagenesis and in Weigle Repair, J. Bacteriol., 1986, vol. 168, pp. 1159-1164.

    Google Scholar 

  32. Bhamre, S., Gadea, B.B., Koyama, C.A., et al., An Aerobic recA-, umuC-Dependent Pathway of Spontaneous Base-Pair Substitution Mutagenesis in Escherichia coli, Mutat. Res., 2001, vol. 473, pp. 229-247.

    Google Scholar 

  33. Zou, Y., Walker, R., Bassett, H., et al., Formation of DNA Repair Intermediates and Incision by the ATP-Dependent UvrB-UvrC Endonuclease, J. Biol. Chem., 1997, vol. 272, pp. 4820-4827.

    Google Scholar 

  34. Gordienko, I. and Rupp, W.D., A Specific 3′ Exonuclease Activity of UvrABC, EMBO J., 1998, vol. 17, pp. 626-633.

    Google Scholar 

  35. Moolenaar, G.F., Bazuine, M., van Knippenberg, I.C., et al., Characterization of the Escherichia coli Damage-Independent UvrBC Endonuclease Activity, J. Biol. Chem., 1998, vol. 273, pp. 34 896-34 903.

    Google Scholar 

  36. Taddei, F., Matic, I., and Radman, M., cAMP-Dependent SOS Induction and Mutagenesis in Resting Bacterial Populations, Proc. Natl. Acad. Sci. USA, 1995, vol. 92, pp. 11 736-11 740.

    Google Scholar 

  37. Kuzminov, A., Recombinational Repair of DNA Damage in Escherichia coli and Bacteriophage λ, Microbiol. Mol. Biol. Rev., 1999, vol. 63, pp. 751-813.

    Google Scholar 

  38. Kornberg, A. and Baker, T.A., DNA Replication, New York: Freeman, 1992.

    Google Scholar 

  39. Bonner, C.A., Randall, S.K., Rayssiguier, C., et al., Purification and Characterization of an Inducible Escherichia coli DNA Polymerase Capable of Insertion and Bypass at Abasic Lesions in DNA, J. Biol. Chem., 1988, vol. 263, pp. 18 946-18 952.

    Google Scholar 

  40. Wagner, J., Gruz, P., Kim, S.-R., et al., The dinB Gene Encodes a Novel E. coli DNA Polymerase, DNA PolIV, Involved in Mutagenesis, Mol. Cell, 1999, vol. 4, pp. 281-286.

    Google Scholar 

  41. Bacher-Reuven, N., Arad, G., Maor-Shoshani, A., and Livneh, Z., The Mutagenesis Protein UmuC Is a DNA Polymerase Activated by UmuD', RecA and SSB and Specialized for Translesion Replication, J. Biol. Chem., 1999, vol. 274, pp. 31 763-31 766.

    Google Scholar 

  42. Tang, M., Shen, X., Frank, E.G., et al., UmuD'2C Is an Error-Prone DNA Polymerase, E. coli PolV, Proc. Natl. Acad. Sci. USA, 1999, vol. 96, pp. 8919-8924.

    Google Scholar 

  43. Goldsmith, M., Sarov-Blat, L., and Livneh, Z., Plasmid-Encoded MucB Protein Is a DNA Polymerase (polRI) Specialized for Lesion Bypass in the Presence of MucA*, RecA, and SSB, Proc. Natl. Acad. Sci. USA, 2000, vol. 97, pp. 11 227-11 231.

    Google Scholar 

  44. Knippers, R., DNA Polymerase II, Nature, 1970, vol. 228, pp. 1050-1053.

    Google Scholar 

  45. Berardini, M., Foster, P.L., and Loechler, E.L., DNA Polymerase II (polRI) Is Involved in a New DNA Repair Pathway for DNA Interstrand Cross-Links in Escherichia coli, J. Bacteriol., 1999, vol. 181, pp. 2878-2882.

    Google Scholar 

  46. Qiu, Z. and Goodman, M.F., The Escherichia coli polB Locus Is Identical to dinA, the Structural Gene for DNA Polymerase II, J. Biol. Chem., 1997, vol. 272, pp. 8611-8617.

    Google Scholar 

  47. Escarceller, M., Hicks, J., Gudmundsson, G., et al., Involvement of Escherichia coli DNA Polymerase II in Response to Oxidative Damage and Adaptive Mutation, J. Bacteriol., 1994, vol. 176, pp. 6221-6228.

    Google Scholar 

  48. Foster, P.L., Gudmundsson, G., Trimarchi, J.M., et al., Proofreading-Defective DNA Polymerase II Increases Adaptive Mutation in Escherichia coli, Proc. Natl. Acad. Sci. USA, 1995, vol. 92, pp. 7951-7955.

    Google Scholar 

  49. Pham, P., Rangarajan, S., Woodgate, R., and Goodman, M.F., Roles of DNA Polymerases V and II in SOS-Induced Error-Prone and Error-Free Repair in Escherichia coli, Proc. Natl. Acad. Sci. USA, 2001, vol. 98, pp. 8350-8354.

    Google Scholar 

  50. Cox, M.M., Recombinational DNA Repair in Bacteria and the RecA Protein, in Progress in Nucleic Acid Research and Molecular Biology, London: Academic, 1999, vol. 63, pp. 310-366.

    Google Scholar 

  51. Kato, T. and Shinoura, Y., Isolation and Characterization of Mutants of Escherichia coli Deficient in Induction of Mutagenesis by Ultraviolet Light, Mol. Gen. Genet., 1977, vol. 156, pp. 121-131.

    Google Scholar 

  52. Steinborn, G., uvm Mutants of Escherichia coli K12 Deficient in UV Mutagenesis: I. Isolation of uvm Mutants and Their Phenotypical Characterization in DNA Repair and Mutagenesis, Mol. Gen. Genet., 1978, vol. 165, pp. 87-93.

    Google Scholar 

  53. Tang, M., Pham, P., Shen, X., et al., Roles of E. coli DNA Polymerases IV and V in Lesion-Targeted and Untargeted SOS Mutagenesis, Nature, 2000, vol. 404, pp. 1014-1018.

    Google Scholar 

  54. Brotcorne-Lannoye, A. and Maenhaut-Michel, G., Role of RecA Protein in Untargeted UV Mutagenesis of Bacteriophage λ: Evidence for the Requirement of the dinB Gene, Proc. Natl. Acad. Sci. USA, 1986, vol. 83, pp. 3904-3908.

    Google Scholar 

  55. Kim, S.R., Maenhaut-Michel, G., Yamada, M., et al., Multiple Pathways for SOS-Induced Mutagenesis in E. coli: An Overexpression of dinB/P Results in Strongly Enhancing Mutagenesis in the Absence of Any Exogenous Treatment to Damage DNA, Proc. Natl. Acad. Sci. USA, 1997, vol. 94, pp. 13 792-13 797.

    Google Scholar 

  56. Maor-Shoshani, A., Reuven, N.B., Tomer, G., and Livneh, Z., Highly Mutagenic Replication by DNA Polymerase V (UmuC) Provides a Mechanistic Basis for SOS Untargeted Mutagenesis, Proc. Natl. Acad. Sci. USA, 2000, vol. 97, pp. 565-570.

    Google Scholar 

  57. Napolitano, R., Janel-Bintz, R., Wagner, J., and Fuchs, R.P.P., All Three SOS-Inducible DNA Polymerases (Pol II, Pol IV and Pol V) Are Involved in Induced Mutagenesis, EMBO J., 2000, vol. 19, pp. 6259-6265.

    Google Scholar 

  58. Kim, S.-R., Matsui, K., Yamada, M., et al., Roles of Chromosomal and Episomal dinB Genes Encoding DNA Pol IV in Targeted and Untargeted Mutagenesis in Escherichia coli, Mol. Genet. Genomics, 2001, vol. 266, pp. 207-215.

    Google Scholar 

  59. Foster, P.L., Adaptive Mutation in Escherichia coli, Cold Spring Harbor Symp. Quant. Biol., 2000, vol. 65, pp. 21-29.

    Google Scholar 

  60. McKenzie, G.J., Lee, P.L., Lombardo, M.-J., et al., SOS Mutator DNA Polymerase IV Functions in Adaptive Mutation and Not Adaptive Amplification, Mol. Cell, 2001, vol. 7, pp. 571-579.

    Google Scholar 

  61. Bull, H.J., Lombardo, M.-J., and Rosenberg, S.M., Stationary-Phase Mutation in the Bacterial Chromosome: Recombination Protein and DNA Polymerase IV Dependence, Proc. Natl. Acad. Sci. USA, 2001, vol. 98, pp. 8334-8341.

    Google Scholar 

  62. Yeiser, B., Pepper, E.D., Goodman, M.F., and Finkel, S.E., SOS-Induced DNA Polymerases Enhance Long-Term Survival and Evolutionary Fitness, Proc. Natl. Acad. Sci. USA, 2002, vol. 99, pp. 8737-8741.

    Google Scholar 

  63. McDonald, J.P., Levine, A.S., and Woodgate, R., The Saccharomyces cerevisiae RAD30 Gene, a Homologue of Escherichia coli dinB and umuC, Is DNA Damage-Inducible and Functions in a Novel Error-Free Postreplication Repair Mechanism, Genetics, 1997, vol. 147, pp. 1557-1568.

    Google Scholar 

  64. Friedberg, E.C., Feaver, W.J., and Gerlach, V.L., The Many Faces of DNA Polymerases: Strategies for Mutagenesis and for Mutational Avoidance, Proc. Natl. Acad. Sci. USA, 2000, vol. 97, pp. 5681-5683.

    Google Scholar 

  65. Sutton, M.D. and Walker, G.C., Managing DNA Polymerases: Coordinating DNA Replication, DNA Repair, and DNA Recombination, Proc. Natl. Acad. Sci. USA, 2001, vol. 98, pp. 8342-8349.

    Google Scholar 

  66. Goodman, M.F., Error-Prone Repair DNA Polymerases in Prokaryotes and Eukaryotes, Annu. Rev. Biochem., 2002, vol. 71, pp. 17-50.

    Google Scholar 

  67. Johnson, R.E., Prakash, S., and Prakash, L., Efficient Bypass of a Thymine-Thymine Dimer by Yeast DNA Polymerase, Polη, Science, 1999, vol. 283, pp. 1001-1004.

    Google Scholar 

  68. Masutani, C., Kusumoto, R., Yamada, A., et al., The XPV (Xeroderma Pigmentosum Variant) Gene Encodes Human DNA Polymerase η, Nature, 1999, vol. 399, pp. 700-704.

    Google Scholar 

  69. Echols, H., SOS Functions, Cancer and Inducible Evolution, Cell (Cambridge, Mass.), 1981, vol. 25, pp. 1-2.

    Google Scholar 

  70. Modrich, P., Methyl-Directed DNA Mismatch Correction, J. Biol. Chem., 1989, vol. 264, pp. 6597-6600.

    Google Scholar 

  71. Boe, L., Mechanism for Induction of Adaptive Mutations in Escherichia coli, Mol. Microbiol., 1990, vol. 4, pp. 597-601.

    Google Scholar 

  72. Foster, P.L. and Cairns, J., Mechanisms of Directed Mutation, Genetics, 1992, vol. 131, pp. 783-789.

    Google Scholar 

  73. Bridges, B.A. and Ereira, S., DNA Synthesis and Viability of a mutT Derivative of Escherichia coli WP2 under Conditions of Amino Acid Starvation and Relation to Stationary-Phase (Adaptive) Mutation, J. Bacteriol., 1998, vol. 180, pp. 2906-2910.

    Google Scholar 

  74. Caillet-Fauquet, P., Maenhaut-Michel, G., and Radman, M., SOS Mutator Effect in E. coli Mutants Deficient in Mismatch Correction, EMBO J., 1984, vol. 3, pp. 707-712.

    Google Scholar 

  75. Fijalkowska, I.J., Dunn, R.L., and Schaaper, R.M., Genetic Requirements and Mutational Specificity of the Escherichia coli SOS Mutator Activity, J. Bacteriol., 1997, vol. 179, pp. 7435-7445.

    Google Scholar 

  76. Harris, R.S., Feng, G., Thulin, C., et al., Mismatch Repair Protein MutL Becomes Limiting during Stationary-Phase Mutation, Genes Dev., 1997, vol. 11, pp. 2426-2437.

    Google Scholar 

  77. Foster, P.L., Are Adaptive Mutations Due to a Decline in Mismatch Repair? The Evidence Is Lacking, Mutat. Res., 1999, vol. 436, pp. 179-184.

    Google Scholar 

  78. Feng, G., Tsui, H.C., and Winkler, M.E., Depletion of the Cellular Amounts of the MutS and MutH Methyl-Directed Mismatch Repair Proteins in Stationary-Phase Escherichia coli K-12 Cells, J. Bacteriol., 1996, vol. 178, pp. 2388-2396.

    Google Scholar 

  79. Harris, R.S., Feng, G., Ross, K.J., et al., Mismatch Repair Is Diminished during Stationary-Phase Mutation, Mutat. Res., 1999, vol. 437, pp. 51-60.

    Google Scholar 

  80. Harris, R.S., Bull, H.J., and Rosenberg, S.M., A Direct Role for DNA Polymerase III in Adaptive Reversion of a Frameshift Mutation in Escherichia coli, Mutat. Res., 1997, vol. 375, pp. 19-24.

    Google Scholar 

  81. Bridges, B.A., Motershead, R.P., and Sedgwick, S.G., Mutagenic DNA Repair in Escherichia coli: III. Requirement for a Function of DNA Polymerase III in Ultraviolet-Light Mutagenesis, Mol. Gen. Genet., 1976, vol. 144, pp. 53-58.

    Google Scholar 

  82. Brotcorne-Lannoye, A., Maenhaut-Michel, G., and Radman, M., Involvement of DNA Polymerase III in UV-Induced Mutagenesis of Bacteriophage λ, Mol. Gen. Genet., 1985, vol. 199, pp. 64-69.

    Google Scholar 

  83. Bridges, B.A. and Bates, H., Mutagenic DNA Repair in Escherichia coli: XVIII. Involvement of DNA Polymerase III α-Subunit (DnaE Protein) in Mutagenesis after Exposure to UV Light, Mutagenesis, 1990, vol. 5, pp. 35-38.

    Google Scholar 

  84. Drake, J.W., Spontaneous Mutation, Annu. Rev. Genet., 1991, vol. 25, pp. 125-146.

    Google Scholar 

  85. Babynin, E.V., Adaptive Mutagenesis: Rebirth of Lamarckism or a New View of Darwinism, Usp. Sovrem. Biol., 2001, vol. 121,no. 6, pp. 531-536.

    Google Scholar 

  86. Rosenberg, S.M., Thulin, C., and Harris, R.S., Transient and Heritable Mutators in Adaptive Evolution in the Lab and in Nature, Genetics, 1998, vol. 30, pp. 1559-1566.

    Google Scholar 

  87. Rosenberg, S.M., Evolving Responsively: Adaptive Mutation, Nat. Rev. Genet., 2001, vol. 2, pp. 504-515.

    Google Scholar 

  88. Hall, B.G., Spontaneous Point Mutations That Occur More Often When They Are Advantageous Than When They Are Neutral, Genetics, 1990, vol. 126, pp. 5-16.

    Google Scholar 

  89. Gizatullin, F.Sh. and Babynin, E.V., Specificity and Time of the Appearance of His+ Reversions Induced by Histidine Starvation in Salmonella typhimurium, Genetika (Moscow), 1996, vol. 32,no. 10, pp. 1333-1340.

    Google Scholar 

  90. Deshpande, A.M. and Newlon, C.S., DNA Replication Fork Pause Sites Dependent on Transcription, Science, 1996, vol. 272, pp. 1030-1033.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Babynin, E.V. SOS-Inducible DNA Polymerases and Adaptive Mutagenesis. Russian Journal of Genetics 40, 463–471 (2004). https://doi.org/10.1023/B:RUGE.0000029146.28893.8d

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:RUGE.0000029146.28893.8d

Keywords

Navigation