Skip to main content
Log in

Localization of Wheat Genes Determining Quantitative Traits: An Addition to the Catalog of Chromosome Location of Genes in Russian Wheat Cultivars

  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

An addition to the catalog of chromosome localization of genes in Russian wheat cultivars was compiled with the published data of the recent decade. The results of chromosomal localization were summarized and analyzed by methods of multivariate statistics. Chromosomes critical for 40 quantitative traits under study proved to cluster according to their homeology, i.e., by homeological groups. The hypotheses providing an explanation for this finding are considered. It is suggested that quantitative traits are similarly controlled by genes located on homeological chromosomes in common wheat, making it possible to isolate a limited number of major genes for each particular quantitative trait.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gonjon, C., Maia, N., and Donssinault, G., Resistance au froid chez le ble, Ann. Amelior. Plantes, 1968, vol. 18, no. 1, pp. 49–57.

    Google Scholar 

  2. Zhirov, E.G. and Bessarab, K.S., The Use of Aneuploids in Cytogenetic Studies in Common Wheat, in Selektsiya i genetika pshenitsy (Wheat Genetics and Breeding), Krasnodar: Krasnodar. Inst. S.–kh., 1982, pp. 160–184.

    Google Scholar 

  3. Tsil'ke, R.A. and Ryzhova, I.A., Monosomic Analysis of Quantitative Traits in Spring Common Wheat with the Use of a New Mil'turum 553 Aneuploid Series, Dokl. Vses. Akad. S–kh. Nauk, 1985, no. 7, pp. 11–13.

    Google Scholar 

  4. Arbuzova, V.A., Efremova, T.T., Laikova, L.I., et al., The Development of Precise Genetic Stocks in Two Wheat Cultivars and Their Use in Genetic Analysis, Euphytica 1996, vol. 89, no. 1, pp. 11–15.

    Google Scholar 

  5. Gulyaeva, Z.B., Construction of Substitution Lines of Wheat Cultivar Ul'yanovka with the Use of Aneuploids of Cultivar Chinese Spring, Byull. Vses. Nauchno-Issled. Inst. Rastenievod., 1982, no. 112, pp. 58–62.

    Google Scholar 

  6. Bessarab, K.S., Efremov, A.A., and Zhirov, E.G., Cold Resistance in Substitution Lines of Bezostaya 1 (Al'bidum 114), in Selektsiya i genetika pshenitsy: Sbornik nauchnykh trudov Krasnodarskogo sel'skokhozyaistvennogo instituta im. P.P. Luk'yanenko (Wheat Genetics and Breeding: Collection of Works of the Krasnodar Agricultural Institute), Krasnodar, 1985, pp. 103–109.

  7. Gaidalenok, R.F., Intervarietal Chromosome Substitution in Common Wheat Cultivars Saratovskaya 29 and Janetzkis Probat and Comparison of the Methods Employed, in Kharakteristika genoma nekotorykh vidov sel'skokhozyaistvennykh rastenii(Genome Characterization in Several Crop Species), Novosibirsk: Inst. Tsitol. Genet., 1990, pp. 198–210.

    Google Scholar 

  8. McIntosh, R.A., Hart, G.E., Devos, K.M., et al., Catalogue of Gene Symbols for Wheat, Proc. 9th Int. Wheat Genet. Symp., Saskatoon, Canada, 1998, vol. 5, pp. 1–235.

    Google Scholar 

  9. Goncharov, N.P., Lokalizatsiya genov u myagkoi pshenitsy (Localization of Common Wheat Genes), Novosibirsk: Inst. Tsitol. Genet., 1992.

    Google Scholar 

  10. Goncharov, N.P., Cataloguing of Chromosomal Location of Genes in Russian Cultivars of Common Wheat, Acta Agronom. Hung., 1996, vol. 44, pp. 279–286.

    Google Scholar 

  11. Maistrenko, O.I., Prospects of Using Aneuploids in Wheat Genetics and Breeding, Sel. Semenovod., 1972, no. 3, pp. 15–19.

    Google Scholar 

  12. McEvan, J.M. and Kaltskes, P.J., Early Generation Testing as a Means of Predicting the Value of Specific Chromosome Substitution into Common Wheat, Can. J. Genet. Cytol., 1970, vol. 12, no. 4, pp. 711–723.

    Google Scholar 

  13. Snape, J.W. and Law, C.N., The Detection of Homologous Chromosome Variation in Wheat Using Backcross Reciprocal Monosomic Lines, Heredity, 1980, vol. 45, no. 2, pp. 187–200.

    Google Scholar 

  14. Gaidalenok, R.F., Khrabrova, M.A., Litkovskaya, N.P., and Kovaleva, N.M., Development and Use of Lines with Substituted Chromosomes in Saratovskaya 29/Janetzkis Probat, EWAC Newslett., 1995, pp. 128–131.

  15. Sears, E.R., Cytogenetic Studies with Polyploid Species of Wheat: 1. Chromosomal Aberrations in Progeny of Haploid Triticum vulgare, Genetics, 1939, vol. 24, pp. 509–523.

    Google Scholar 

  16. Morris, R., Chromosomal Location of Genes for Wheat Characters, Ann. Wheat Newslett. (Kansas), 1959–1985, vols. 6–31.

  17. Goncharov, N.P., To the Generation of a Catalog of Chromosome Location of Common Wheat Genes, Sib.Vestn. S–kh. Nauki, 1988, no. 1, pp. 17–28.

    Google Scholar 

  18. Kendall, M.G. and Stuart, A., Design and Analysis, and Time-Series, vol. 3 of The Advanced Theory of Statistics, London: Charles Griffin, 1968.

    Google Scholar 

  19. Davoyan, R.O. and Zhirov, E.G., Genome Substitution Forms Avrodes as a Source of Leaf Rust and Powdery Mildew Resistance in Common Wheat, S–kh. Biol., 1995, no. 1, pp. 98–101.

    Google Scholar 

  20. Davoyan, R.O. and Ternovskaya, T.K., Use of a Synthetic Hexaploid Triticum miguschovae for Transfer of Leaf Rust Resistance to Common Wheat, Euphytica, 1996, vol. 89, no. 1, pp. 99–102.

    Google Scholar 

  21. Lapochkina, I.N., Solomatin, D.A., Serezhkina, G.V., et al., Common Wheat Lines Carrying Aegilops speltoides Tausch Genetic Material, Genetika (Moscow), 1996, vol. 32, no. 12, pp. 1651–1656.

    Google Scholar 

  22. Ternovskaya, T.K. and Antonyuk, M.Z., Genes for Biochemical Characters as Markers of Allogenic Genetic Material in the Wheat Genome, Tsitol. Genet., 1996, vol. 30, no. 3, pp. 71–85.

    Google Scholar 

  23. Korzun, V.N. and Kartel', N.A., Genetic Mapping with the Use of RFLP Analysis in Plants, Fiziol. Biokh. Kul't. Rast., 1994, vol. 26, no. 6, pp. 545–551.

    Google Scholar 

  24. Sobko, T.A. and Sozinov, A.A., The Genetic Control of Spike Morphological Characters and the Association of Allele Variation between Loci of Chromosomes 1A and 1B in Winter Common Wheat, Tsitol. Genet., 1993, vol. 27, no. 5, pp. 15–22.

    Google Scholar 

  25. Kudryavtsev, A.M. and Popova, T.A., Genetic Linkage between Gliadin-Coding Genes and Genes Determining Spike Color and Hairy Glume in Spring Durum Wheat Triticum durum Desf., Genetika (Moscow), 1994, vol. 30, no. 12, pp. 1587–1592.

    Google Scholar 

  26. Elokhina, L.P., The Genetic Control of Spike Color in Spring Common Wheat Cultivar Mil'turum 553, Rol' nauki v intensifikatsii sel'skogo khozyaistva: Materialy konferentsii, Omsk, 20 aprelya 1989 g. (The Role of Research in Intensification of Agriculture: Proc. Conf., Omsk, April 20, 1989), Novosibirsk, 1990, part 1, pp. 13–15.

  27. Bogdanova, E.D., Genetic Variation Induced by Nicotinic Acid or Its Derivatives, Doctoral (Biol.) Dissertation, Novosibirsk: Inst. Cytol. Genet., 1992.

    Google Scholar 

  28. Law, C.N. and Worland, A.J., Inter-Varietal Chromosome Substitution Lines in Wheat—Revisited, Euphytica, 1996, vol. 89, no. 1, pp. 1–10.

    Google Scholar 

  29. Miura, H. and Worland, A.J., Genetic Control of Vernalization, Day-Length Response, and Earliness per se by Homeologous Group-3 Chromosome in Wheat, Plant Breed., 1994, vol. 113, pp. 160–169.

    Google Scholar 

  30. Sutka, J., Worland, A.J., and Maystrenko, O.I., Slight Effect of the Cytoplasm on Frost Resistance in Wheat (Triticum aestivum L.), Cereal Res. Commun., 1991, vol. 19, no. 3, pp. 311–317.

    Google Scholar 

  31. Maistrenko, O.I., The Use of Cytogenetic Methods in Ontogenetic Studies with Common Wheat, Ontogenez vysshikh rastenii: Sb. nauchnykh trudov Instituta genetiki Akademii nauk Respubliki Moldova (Ontogeny of Higher Plants: Collection of Works of the Institute of Genetics, Academy of Sciences of Moldova), Chisinau: Shtiintsa, 1992, pp. 98–114.

    Google Scholar 

  32. Shulembaeva, K.K., Tankimanova, M.K., and Bersimbaev, R.I., The Use of Haploid Selection in Substituting Wheat Chromosomes, Mezhdunarodnaya konferentsiya “Biologiya kul'tiviruemykh kletok rastenii i biotekhnologiya.” Tezisy dokladov (Proc. Int. Conf. “Biology of Cultured Plant Cells and Biotechnology), Almaty, 1993, vol. 1, p. 133.

    Google Scholar 

  33. Davoyan, R.O., Transmission of Leaf Rust Resistance Genes from Triticum militimae Zhuk. and Aegilops speltoides Boiss. into the Common Wheat Genome through Synthetic Hexaploids T. miguschovae and Avrodes, Cand. Sci. (Biol.) Dissertation, St. Petersburg, 1993.

  34. Peusha, H., Lebedeva, T., Priilinn, O., and Enno, T., Genetic Analysis of Durable Powdery Mildew Resistance in a Common Wheat Lines, Hereditas, 2003, vol. 203, pp. 201–206.

    Google Scholar 

  35. Ternovskaya, T.K. and Zhirov, E.G., Genome D of Common Wheat: The Genetic Control of Waxiness, Hairy Glume, and Mature Spike Color, Tsitol. Genet., 1993, vol. 27, no. 3, pp. 14–20.

    Google Scholar 

  36. Koval', S.F., Genetics of Isogenic Lines of Spring Wheat Cultivar Novosibirskaya 67: 1. Localization of the Gene Controlling Brown Glume to Chromosome 1D in Common Wheat, Genetika (Moscow), 1994, vol. 30, no. 4, pp. 570–571.

    Google Scholar 

  37. Zharkov, N.A., Meiotic Abnormalities in Wheat Mil'turum 553 Monosomic at Chromosome 3B, Genetika (Moscow), 1990, vol. 24, no. 5, pp. 7–10.

    Google Scholar 

  38. Arbuzova, V.A., Efremova, T.T., Laikova, L.I., et al., The Use of Wheat Precise Genetic Stocks for Cytogenetic Research, EWAC Newslett., 2001, pp. 11–13.

  39. Pánkova, K. and Kosner, J., Study of Vernalization and Photoperiodic Responses in Wheat, EWAC Newslett., 1998, pp. 39–42.

  40. Pylnev, V.M., Zorun'ko, V.I., Bezdetnaya, L.G., et al., Identification of Chromosomes Controlling Spontaneous Hybridization of Cultivars in Winter Common Wheat, Agrarn. Visn. Prichernomor.: Biol. S–gosp. Nauki, 1998, no. 2, pp. 75–86.

    Google Scholar 

  41. Efremova, T.T., Ermakova, M.F., Popova, R.K., and Maystrenko, O.I., Estimate of Kernel Hardness in the Lines with Intervarietal Substitution of Single Wheat Chromosomes of Saratovskaya 29, EWAC Newslett., 2001, pp. 113–115.

  42. Efremova, T.T., Laikova, L.I., Arbuzova, V.S., et al., Use of Aneuploid Analysis in Chromosomal Localization and Wheat Genes Mapping, EWAC Newslett., 2001, pp. 115–118.

  43. Salina, E., Börner, A., Leonova, I., et al., Microsatellite Mapping of the Induced Sphaerococcoid Mutation Genes in Triticum aestivum, Theor. Appl. Genet., 2000, vol. 100, pp. 686–689.

    Google Scholar 

  44. Merezhko, A.F., Problema donorov v selektsii rastenii (The Problem of Donors in Plant Breeding), St. Petersburg: Vseross. Inst. Rastenievod., 1994.

    Google Scholar 

  45. Larson, R.D., Aneuploid Analysis of Quantitative Characters in Wheat, Proc. 2nd Int. Wheat Genet. Symp. (Lund, 1963), Lund, 1966, pp. 345–354.

  46. Allan, R.E., Differentiation between Two Norin 10/Brevor 14 Semidwarf Genes in a Common Wheat Genetic Background, Seiken Ziho, 1971, vol. 22, pp. 83–90.

    Google Scholar 

  47. Galiba, G., Quarrie, S.A., Sutka, J., et al., RFLP Mapping of the Vernalization (Vrn1) and Frost Resistance (Fr1) Genes on Chromosome 5A of Wheat, Theor. Appl. Genet., 1995, vol. 90, pp. 1174–1179.

    Google Scholar 

  48. Law, C.N., Snape, J.W., and Worland, A.J., Aneuploidy in Wheat and Its Uses in Genetic Analysis, Wheat Breeding: Its Scientific Basis, Lupton, F.G.H., Ed., London: Chapman and Hall, 1987, pp. 71–108.

    Google Scholar 

  49. Nilsson-Ehle, H., Multiple Allelomorphe und Komplexmutationen beim Weizen. (Untersuchungen uber Speltoidmutationen beim Weizen. II), Hereditas (Lund, Swed.), 1920, vol. 1, pp. 277–311.

    Google Scholar 

  50. Sears, E.R., The Aneuploids of Common Wheat, Mo Agric. Exp. Sta Res. Bull., 1954, no. 572, pp. 1–59.

    Google Scholar 

  51. Hart, G.E., Gale, M.D., and McIntosh, R.A., Linkage Maps of Triticum aestivum (Hexaploid Wheat, 2n = 42, Genomes A, B and D) and Ae. taushii (2n = 14, Genome D), Genetic Maps, 1993, vol. 6, pp. 6204–6219.

    Google Scholar 

  52. Filipchenko, Yu.A., Variation of Quantitative Traits in Common Wheat, Izv. Byuro Genet. Evgen., 1926, no. 4, pp. 5–58.

    Google Scholar 

  53. Filipchenko, Yu.A., Genetika myagkikh pshenits (Genetics of Common Wheat), Moscow: Nauka, 1979, 2nd ed.

    Google Scholar 

  54. Mather, K. and Jinks, J.L., Biometrical Genetics: The Study of Continuous Variation, London: Chapman and Hall, 1982.

    Google Scholar 

  55. Snape, J.W., Conventional Methods of Genetic Analysis in Wheat, Wheat Breeding: Its Scientific Basis, Lupton, F.G.H., Ed., London: Chapman and Hall, 1987, pp. 109–128.

    Google Scholar 

  56. Hyne, V., Kearsey, M.J., Martinez, O., et al., A Partial Genome Assay for Quantitative Trait Loci in Wheat (Triticum aestivum) Using Different Analytical Techniques, Theor. Appl. Genet., 1994, vol. 89, pp. 735–741.

    Google Scholar 

  57. Snape, J.W., Quarrie, S.A., and Laurie, D.A., Comparative Mapping and Its Use for the Genetic Analysis of Agronomic Characters in Wheat, Euphytica, 1996, vol. 89, pp. 27–31.

    Google Scholar 

  58. Börner, A. and Korsun, V., The Importance of Cereal Aneuploids for Comparative Gene Mapping, EWAC Newslett., 2001, pp. 45–48.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goncharov, N.P., Efimov, V.M. Localization of Wheat Genes Determining Quantitative Traits: An Addition to the Catalog of Chromosome Location of Genes in Russian Wheat Cultivars. Russian Journal of Genetics 39, 1243–1251 (2003). https://doi.org/10.1023/B:RUGE.0000004139.31926.bb

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:RUGE.0000004139.31926.bb

Keywords

Navigation