Skip to main content
Log in

Features of Cation Hydration in Concentrated Aqueous Solutions of MeCl (Me = Li, Na, K, Rb): A Study by the Method of Integral Equations

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

The structural features of concentrated aqueous solutions of MeCl (Me = Li, Na, K, Rb; molar ratio [salt] : [water] = 1 : 15) at 293 K and 0.1 MPa were studied by the method of integral equations. The calculation results show that the disordering effect of the cation on the solvent structure grows in the order NaCl < KCl < RbCl (the number of free water molecules grows, and the content of tetrahedrally ordered molecules decreases). With LiCl, the changes in these parameters are maximal. In the systems containing Li+ and Na+ ions, the association parameter is lower than in pure water, whereas in the solutions with the K+ and Rb+ ions it is higher, in agreement with the concept of positive and negative hydration. It was suggested that, with increasing cationic radius, formation of hydrogen bonds between bulk water molecules becomes more preferential, and interactions between the anion and solvent molecules are weakened. On the contrary, the coordination number of the cation increases with its radius. In the examined series of solutions, the probability of formation of contact ion pairs grows considerably, and that of formation of hydration-separated ion pairs decreases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Roux, B. and Karplus, M., Ann. Rev. Biophys. Biomol. Struct., 1994, vol. 23, p. 731.

    Google Scholar 

  2. Jordan, P.C., Biophys. J., 1990, vol. 58,no. 5, p. 1133.

    Google Scholar 

  3. Chandler, D. and Andersen, H.C., J. Chem. Phys., 1972, vol. 57,no. 5, p. 1930.

    Google Scholar 

  4. Enderby, J.E. and Neilson, G.W., Adv. Phys., 1980, vol. 29,no. 2, p. 323.

    Google Scholar 

  5. Hummer, G. and Soumpasis, D.M., Mol. Phys., 1992, vol. 77,no. 4, p. 769.

    Google Scholar 

  6. Holovko, M.F. and Kalyuzhnyi, Yu.V., Mol. Phys., 1989, vol. 68,no. 6, p. 1239.

    Google Scholar 

  7. Ohba, M. and Arakawa, K., Bull. Chem. Soc. Jpn., 1985, vol. 58,no. 1, p. 9.

    Google Scholar 

  8. Fedotova, M.V., Cand. Sci. (Chem.) Dissertation, Ivanovo, 1994.

  9. Fedotova, M.V. and Trostin, V.N., Zh. Fiz. Khim., 1996, vol. 70,no. 6, p. 1019.

    Google Scholar 

  10. Fedotova, M.V., Nikologorskaya, E.L., Kuznetsov, V.V., and Trostin, V.N., Zh. Neorg. Khim., 1996, vol. 41,no. 2, p. 326.

    Google Scholar 

  11. Kalyuzhnyi, Yu.V., Fedotova, M.V., Golovko, M.F., and Trostin, V.N., Preprint of the Inst. of the Physics of Condensed Systems, Ukrainian National Acad. Sci., Lviv, 1994, no. 93-27P.

    Google Scholar 

  12. Fedotova, M.V. and Trostin, V.N., Zh. Fiz. Khim., 1996, vol. 70,no. 10, p. 1804.

    Google Scholar 

  13. Smith, D.E. and Dang, L.X., J. Chem. Phys., 1994, vol. 100,no. 5, p. 3757.

    Google Scholar 

  14. Heinzinger, K., Physica B, 1985, vol. 131, p. 196.

    Google Scholar 

  15. Zhu, S.-B. and Robinson, G.W., J. Chem. Phys., 1992, vol. 97,no. 6, p. 4336.

    Google Scholar 

  16. Berendsen, H.J.C., Postma, J.P.M., Van Gunsteren, W.F., and Hermans, J., Jerusalem Symp. on Quantum Chemistry and Biochemistry, Pullman, B., Ed., Dordrecht: Reidel, 1981, p. 331.

    Google Scholar 

  17. Pettitt, B.M. and Rossky, P.J., J. Chem. Phys., 1982, vol. 77,no. 3, p. 1451.

    Google Scholar 

  18. Pettitt, B.M. and Rossky, P.J., J. Chem. Phys., 1986, vol. 84,no. 10, p. 5836.

    Google Scholar 

  19. Dang, L.X., J. Am. Chem. Soc., 1995, vol. 117,no. 26, p. 6954.

    Google Scholar 

  20. Fumi, F.G. and Tosi, M.P., J. Phys. Chem. Solids, 1964, vol. 25,no. 1, p. 31.

    Google Scholar 

  21. Gucker, F.T., Stubley, D., and Hill, D.J., J. Chem. Thermodyn., 1977, vol. 9,no. 10, p. 987.

    Google Scholar 

  22. Litvinenko, I.V., Zh. Strukt. Khim., 1963, vol. 4,no. 6, p. 830.

    Google Scholar 

  23. Celeda, J., Coll. Czech. Chem. Commun., 1983, vol. 48,no. 6, p. 1680.

    Google Scholar 

  24. Zagainov, V.M., Sevryugin, V.A., Alekseeva, S.I., and Emel'yanov, M.I., in Fizika zhidkosti (Fluid Physics), Kazan, 1986, p. 110.

  25. Raukhvarger, L.E., Gorbovitskaya, T.I., Kreitus, I.V., and Timiks, Yu.E., Izv. Akad. Nauk Latv. SSR, Ser. Khim., 1984, no. 9, p. 207.

  26. Muller, K.J. and Hertz, H.G., J. Phys. Chem., 1996, vol. 100,no. 4, p. 1256.

    Google Scholar 

  27. Samoilov, O.Ya., Struktura vodnykh rastvorov elektrolitov i gidratatsiya ionov (Structure of Aqueous Electrolyte Solutions and Ion Hydration), Moscow: Akad. Nauk SSSR, 1957.

    Google Scholar 

  28. Lee, S.H. and Rasaiah, J.C., J. Phys. Chem., 1996, vol. 100,no. 4, p. 1420.

    Google Scholar 

  29. Koneshan, S., Rasaiah, J.C., Lynden-Bell, R.M., and Lee, S.H., J. Phys. Chem., 1998, vol. 102,no. 21, p. 4193.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oparin, R.D., Fedotova, M.V. & Trostin, V.N. Features of Cation Hydration in Concentrated Aqueous Solutions of MeCl (Me = Li, Na, K, Rb): A Study by the Method of Integral Equations. Russian Journal of General Chemistry 74, 13–20 (2004). https://doi.org/10.1023/B:RUGC.0000025166.75929.e4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:RUGC.0000025166.75929.e4

Keywords

Navigation