Skip to main content
Log in

Oxygen Transport in the SOFC Cathode

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The impedance of the La0.75Sr0.2MnO3-cathode/electrolyte interface for cathodes with different porosity is measured. The impedance spectra are fitted using a developed model of the oxygen transport at this interface. After the measurements, the cathode is removed from the electrolyte. The contact area and the three-phase boundary length (TPBL) at the interface are estimated from SEM images of the electrolyte surface. The dependence of the interfacial electrical resistance on the microstructure is discussed. It is shown that the bulk diffusion of oxygen vacancies at the interface at 950°C is high enough to use the whole La0.75Sr0.2MnO3/YSZ contact area F for the oxygen transport into the electrolyte for microstructures with 2F/TPBL ≤ 2 μm. The impact of the surface diffusion of oxygen species on polarization resistance at operation temperatures <900°C is discussed. The polarization resistance and the morphology of composite cathodes made from La0.75Sr0.2MnO3/YSZ and yttria- or scandia-stabilized zirconia powders (3YSZ, 8YSZ, 10ScSZ) are investigated by impedance spectroscopy at 800–950°C. The polarization (interfacial) resistance decreases gradually with addition of electrolyte powder in the uLSM cathode material independent of the electrolyte powder used. The interfacial resistance of the uLSM/3YSZ, uLSM/8YSZ, and uLSM/10ScSZ composite cathodes is almost the same. The interaction between uLSM and doped zirconia particles is discussed on the basis of the interfacial resistance, activation energies, and high-frequency impedance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Steele, B.C.H., Solid State Ionics, 1995, vol. 75, p. 157.

    Google Scholar 

  2. Steele, B.C.H., Solid State Ionics, 1996, vol. 86–88, p. 1223.

    Google Scholar 

  3. Siebert, E., Hammouche, A., and Kleitz, M., Electrochim. Acta, 1995, vol. 40, p. 1741.

    Google Scholar 

  4. Hammouche, A., Siebert, E., Hammou, A., and Kleitz, M., J. Electrochem. Soc., 1991, vol. 138, p. 1212.

    Google Scholar 

  5. Mizusaki, J., Tagawa, H., Tsuneyoshi, K., and Sawata, A., J. Electrochem. Soc., 1991, vol. 138, no. 7, p. 1867.

    Google Scholar 

  6. Østergård, M.J.L. and Mogensen, M., Electrochim. Acta, 1993, vol. 38, p. 2015.

    Google Scholar 

  7. Adler, S.B., Lane, J.A., and Steele, B.C.H., J. Electrochem. Soc., 1996, vol. 143, p. 3554.

    Google Scholar 

  8. Kuznecov, M., Otschik, P., Eichler, K., and Schaffrath, W., Ber. Bunsen-Ges. Phys. Chem., 1998, vol. 102, p. 1410.

    Google Scholar 

  9. Östergärd, M.J.L., Clausen, C., Bagger, C., and Mogensen, M., Electrochim. Acta, 1995, vol. 40, p. 1971.

    Google Scholar 

  10. Kenjo, T. and Nishiya, M., Solid State Ionics, 1992, vol. 57, p. 295.

    Google Scholar 

  11. Cassidy, M., Bagger, C., Brandon, N., and Day, M., Proc. 4th Eur. SOFC Forum, Lucerne, 2000, p. 153.

  12. Hart, N.T., Brandon, N.P., Day, M.J., and Shemilt, J.E., J. Mat. Sci., 2001, vol. 36, p. 1077.

    Google Scholar 

  13. Jørgensen, M.J., Primdahl, S., Bagger, C., and Mogensen, M., Solid State Ionics, 2001, vol. 139, p. 1.

    Google Scholar 

  14. Stochniol, G., Syskakis, E., and Naoumidis, A., J. Am. Ceram. Soc., 1995, vol. 78, p. 929.

    Google Scholar 

  15. Yokokawa, H., Sakai, N., Kawada, T., and Dokiya, M., Solid State Ionics, 1990, vol. 40, p. 398.

    Google Scholar 

  16. Hammou, A., Jurado, J.R., Chiodelli, G., Marques, F.M., and Antonucci, V., Final report in the framework of JOULE programme (contract JOUE-0044C), 1994.

  17. Kindermann, L., Poulsen, F.W., Larsen, P.H., Nickel, H., and Hilpert, K., Proc. 3rd Eur. SOFC Forum, Stevens, P., Ed., 1998, vol. 2, p. 123.

  18. Anderson, H.U., Tai, L-W., Chen, C.C., Nasrallah, M.M., and Huebner, W., Proc. 4th Int. SOFC Symp., Dokya, M., Tagawa, H., and Singhal, S.C., Eds., 1995, p. 375.

  19. Tai, L-W., Nasrallah, M.M., and Anderson, H.U., Proc. 3rd Int. SOFC Symp., Singhal, S.C. and Iwara, I., Eds., 1993, p. 241.

  20. Murray, E.P. and Barnett, S.A., Solid State Ionics, 2001, vol. 143, p. 265.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuznecov, M., Otschik, P., Trofimenko, N. et al. Oxygen Transport in the SOFC Cathode. Russian Journal of Electrochemistry 40, 1162–1169 (2004). https://doi.org/10.1023/B:RUEL.0000048649.26180.57

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:RUEL.0000048649.26180.57

Navigation