Skip to main content
Log in

Electrooxidation of Methanol on Platinum–Ruthenium Catalysts Applied to a Cation-Exchange Membrane

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Possibilities for production of active Pt–Ru electrodes for the direct methanol fuel cell with a decreased content of platinum-group metals in them are studied. Platinum and ruthenium are electrodeposited on a thin layer of carbon black applied to a Nafion 117 membrane. The deposition potential effect on the specific surface area of the catalyst and its electrochemical activity in the methanol oxidation is studied. The oxidation currents are related to unit true surface area or unit catalyst mass. The dependence of activity on the Pt : Ru ratio in the plating solution and in the deposit is studied. The effect of the catalyst amount deposited and the particle size on the activity is studied. It is shown that the catalytic activity decreases at the average diameter of Pt–Ru particles less than 4 nm. The results are compared with the size effects observed earlier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Petrii, O.A., Dokl. Akad. Nauk SSSR, 1965, vol. 160, p. 871.

    Google Scholar 

  2. Binder, H., Koehling, A., and Sandstede, G., Electroca-talysis in Fuel Cells, Sandstede, G., Ed., London, 1972, p. 43.

  3. Aramata, A. and Masuda, M., J. Electrochem. Soc., 1991, vol. 138, p. 1949.

    Google Scholar 

  4. Gasteiger, H.A., Marcovic, N., Ross, Ph.N., and Cairns, E.J., J. Phys. Chem., 1993, vol. 97, p. 12020.

    Google Scholar 

  5. Gasteiger, H.A., Marcovic, N., Ross, Ph.N., and Cairns, E.J., J. Electrochem. Soc., 1994, vol. 141, p. 1795.

    Google Scholar 

  6. Chu, D. and Gilman, S., J. Electrochem. Soc., 1996, vol. 143, p. 1685.

    Google Scholar 

  7. Lamy, C., Leger, J.-M., Srinivasan, S., in Modern Aspects of Electrochemistry, Bockris, J.O'M. and Conway, B.E., Eds., New York: Plenum, 2002, vol. 34, p. 53.

    Google Scholar 

  8. Wang, J.X., Brancovi, S.R., Sasaki, K., McBreen, J., and Adzi, R.R., Abstracts of Papers, 4th Int. Conf. on Electrocatalysis, Sept. 23–25, 2002, Como (Italy), p. 44.

  9. Lamy, C., Lima, A., LeRhun, V., Delime, F., Contanceau, Ch., and Leger, J.-M., J. Power Sources, 2002, vol. 105, p. 283.

    Google Scholar 

  10. Bagotskii, V.S., Osetrova, N.V., and Skundin, A.M., Elektrokhimiya, 2003, vol. 39, p. 102.

    Google Scholar 

  11. Gurau, B., Viswananthan, R., Liu, R., Lafreuz, T.J., Ley, K.L., and Smotkin, E.S., J. Phys. Chem. B, 1998, vol. 102, p. 9997.

    Google Scholar 

  12. Liu, L., Pu, C., Liu, R., Fan, G., and Smotkin, E.S., Elec-trochim. Acta, 1998, vol. 43, p. 3654.

    Google Scholar 

  13. Radmilovic, V., Gasteiger, H.A., and Ross, P.N., Jr., J. Catal., 1995, vol. 154, p. 98.

    Google Scholar 

  14. Dinh, H.N., Ren, X., Garson, F.H., Zelenay, P., and Gat-tesfeld, S., J. Electroanal. Chem., 2000, vol. 491, p. 222.

    Google Scholar 

  15. Watanabe, M., Uchida, M., and Motoo, S., J. Electroanal. Chem., 1987, vol. 229, p. 395.

    Google Scholar 

  16. Schmidt, T.J., Noeske, M., Gasteiger, H.A., Behm, R.J., Britz, P., and Bonnemann, H., J. Electrochem. Soc., 1998, vol. 145, p. 925.

    Google Scholar 

  17. Takasu, Y., Fujiwara, T., Murakami, Y., Sasaki, K., Oguri, M., Asaki, T., and Sugimoto, W., J. Electrochem. Soc., 2000, vol. 147, p. 4421.

    Google Scholar 

  18. Antoine, O. and Durand, R., Electrochem. Solid State Lett., 2001, vol. 4, p. A 55.

    Google Scholar 

  19. Pron'kin, S.N., Tsirlina, G.A., Petrii, O.A., and Vasiliev, S.Yu., Electrochim. Acta, 2001, vol. 46, p. 2343.

    Google Scholar 

  20. Napporn, W.T., Laborde, H., Leger, J.-M., and Lamy, C., J. Appl. Electrochem., 1996, vol. 404, p. 153.

    Google Scholar 

  21. Delime, F., Leger, J.-M., and Lamy, C., J. Appl. Electro-chem., 1998, vol. 28, p. 27.

    Google Scholar 

  22. Mikhaylova, A.A., Khazova, O.A., and Bagotzky, V.S., J. Electroanal. Chem., 2000, vol. 480, p. 225.

    Google Scholar 

  23. Mikhaylova, A.A., Molodkina, E.B., Khazova, O.A., and Bagotzky, V.S., J. Electroanal. Chem., 2001, vol. 509, p. 119.

    Google Scholar 

  24. Maksimov, Yu.M., Podlovchenko, B.I., and Azar-chenko, T.L., Electrochim. Acta, 1998, vol. 43, p. 1053.

    Google Scholar 

  25. Thompson, S.D., Jordan, L.R., and Forsyth, M., Electrochim. Acta, 2001, vol. 46, p. 1657.

    Google Scholar 

  26. Podlovchenko, B.I. and Andreev, V.N., Usp. Khim., 2002, vol. 71, p. 950.

    Google Scholar 

  27. Witham, C.K., Chun, W., Valdez, T.I., and Narayanan, S.R., Electrochem. Solid State Lett., 2000, vol. 3, p. 497.

    Google Scholar 

  28. Hang, A.T., White, R.E., Weider, J.W., Huang, W., Shi, S., Rana, N., Grunow, S., Stoner, T., and Kaloyeros, A.E., J. Electrochem. Soc., 2002, vol. 149, p. A 868.

    Google Scholar 

  29. Vigier, F., Gloaguen, F., Leger, J.-M., and Lamy, C., Electrochim. Acta, 2001, vol. 46, p. 4331.

    Google Scholar 

  30. Waszczuk, P., Solla-Gullon, J., Kim, H.S., Tong, Y.Y., Montiel, V., Aldaz, A., and Wieckowski, A., J. Catal., 2001, vol. 203, p. 1.

    Google Scholar 

  31. Jusys, Z., Kaiser, J., and Behm, R.J., Electrochim Acta, 2002, vol. 47, p. 3693.

    Google Scholar 

  32. Lee, S.-A., Park, K.-W., Choi, J.-H., Kwon, B.-K., Sung, Y.-E., J. Electrochem. Soc., 2002, vol. 149, p. A1299.

    Google Scholar 

  33. Zelenay, P., Guyon, F., and Gottesfeld, S., Abstracts of Papers, 199th ECS Meeting, 2001.

  34. Mayorova, N.A., Khazova, O.A., and Bagotzky, V.S., J. Solid State Electrochem., 1998, vol. 2, p. 262.

    Google Scholar 

  35. Lin, W.F., Zei, M.S., Eiswirth, M., Ertl, G., Iwasita, T., and Vielstich, W., J. Phys. Chem., 1999, vol. 103, p. 6968.

    Google Scholar 

  36. Khazova, O.A., Mikhaylova, A.A., Skundin, A.M., Tuse-eva, E.K., Havranek, A., and Wipperman, K., Fuel Cells Fund. Syst., 2002, vol. 2, p. 99.

    Google Scholar 

  37. Entina, V.S. and Petrii, O.A., Elektrokhimiya, 1967, vol. 3, p. 1237.

    Google Scholar 

  38. Mukerjee, S. and McBreen J., J. Electroanal. Chem., 1998, vol. 448, p. 163.

    Google Scholar 

  39. Podlovchenko, B.I., Pshenichnikov, A.G., and Skundin, A.M., Elektrokhimiya, 1993, vol. 29, p. 422.

    Google Scholar 

  40. Takasy, Y., Iwazaki, T., Sugimoto, W., and Murakami, Y., Electrochem. Comm., 2000, vol. 2, p. 671.

    Google Scholar 

  41. Antoine, O., Bultel, Y., and Durand, R., J. Electroanal. Chem., 2001, vol. 499, p. 85.

    Google Scholar 

  42. Savinova, E.R., Abstracts of Papers, 4th Int. Conf. on Electrocatalysis, Sept. 23–25, 2002, Como (Italy), p. 17.

  43. Takasu, Y., Kawaguchi, T., Sugimoto, W., and Mar-akami, Y., Abstracts of Papers, 4th Int. Conf. on Electro-catalysis, Sept. 23–25, 2002, Como (Italy), p. 18.

  44. Roth, C., Martz, N., Hahn, F., Fuess, H., and Lamy, C., Abstracts of Papers, 4th Int. Conf. on Electrocatalysis, Sept. 23–25, 2002, Como (Italy), p. 80.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tusseeva, E.K., Mikhaylova, A.A., Khazova, O.A. et al. Electrooxidation of Methanol on Platinum–Ruthenium Catalysts Applied to a Cation-Exchange Membrane. Russian Journal of Electrochemistry 40, 1146–1151 (2004). https://doi.org/10.1023/B:RUEL.0000048646.54270.9d

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:RUEL.0000048646.54270.9d

Navigation