Skip to main content
Log in

To a Theory of Electrocatalysis for the Hydrogen Evolution Reaction: The Hydrogen Chemisorption Energy on the Transition Metal Alloys within the Anderson–Newns Model

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Estimates of the energy of chemisorption of hydrogen (ECH) on a number of alloys of transition metals that are of interest from the viewpoint of a theory of electrocatalysis are made within the Anderson–Newns model. As a simplest example, the behavior of ECH as a function of the position of the Fermi level of a system for nickel containing admixtures of simple metals is studied in a fixed-band approximation. As alternative examples, where this approximation is not fulfilled, a calculation of ECH on tungsten carbide and a Pd1 – x Ag x alloy is performed. It is shown that agreement between calculated ECH and observed ECH is reached in the case of an Ni1 – x Cu x alloy after taking into account mutual influence of processes of adsorption and segregation on the alloy surface. Dependence of rates of a number of electrochemical reactions on the composition and electronic structure of alloys is discussed for all the alloys considered and a comparison with experiment is performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Frumkin, A.N., Izbrannye trudy: Perenapryazhenie vodoroda (Selected Works: The Hydrogen Overvoltage), Moscow: Nauka, 1988.

    Google Scholar 

  2. Parsons, R., Trans. Faraday Soc., 1958, vol. 54, p. 1053.

    Google Scholar 

  3. Gerischer, H., Bull. Soc. Chim. Belg., 1958, vol. 67, p. 506.

    Google Scholar 

  4. Krishtalik, L.I., Zh. Fiz. Khim., 1959, vol. 33, p. 1715.

    Google Scholar 

  5. Belanzher, A. and Vikh, A.K., Elektrokhimiya, 1974, vol. 10, p. 1854.

    Google Scholar 

  6. Korovin, N.V., Elektrokhimiya, 1991, vol. 27, p. 1629.

    Google Scholar 

  7. Medvedev, I.G., Khim. Fiz., 1985, vol. 4, p. 103.

    Google Scholar 

  8. Medvedev, I.G., Elektrokhimiya, 1993, vol. 29, p. 1107.

    Google Scholar 

  9. Medvedev, I.G., Eur. Phys. J., 2000, vol. B17, p. 189.

    Google Scholar 

  10. Anderson, P.W., Phys. Rev., 1961, vol. 124, p. 41.

    Google Scholar 

  11. Newns, D.M., Phys. Rev., 1969, vol. 178, p. 1123.

    Google Scholar 

  12. Medvedev, I.G., Khim. Fiz., 1986, vol. 5, p. 442.

    Google Scholar 

  13. Medvedev, I.G., Poverkhnost, 1991, no. 1, p. 24.

    Google Scholar 

  14. Medvedev, I.G., Poverkhnost, 1991, no. 7, p. 20.

    Google Scholar 

  15. Skundin, A.M., Itogi Nauki Tekh., Ser: Elektrokhim., 1979, vol. 15, p. 227.

    Google Scholar 

  16. Medvedev, I.G., Khim. Fiz., 1988, vol. 7, p. 1507.

    Google Scholar 

  17. Kuznetsov, A.M. and Medvedev, I.G., Elektrokhimiya, 2001, vol. 37, p. 567.

    Google Scholar 

  18. Medvedev, I.G., Elektrokhimiya, 1996, vol. 32, p. 1040.

    Google Scholar 

  19. Korovin, N.V., Kozlova, N.I., and Savel'eva, O.N., Elektrokhimiya, 1978, vol. 14, p. 1575.

    Google Scholar 

  20. Korovin, N.V., Savel'eva, O.N., Kozlova, N.I., Lapshina, T.V., and Kumenko, M.V., Dokl. Akad. Nauk SSSR, 1981, vol. 257, p. 149.

    Google Scholar 

  21. Konstantinova, G.S., Kicheev, A.G., and Korovin, N.V., Elektrokhimiya, 1981, vol. 17, p. 1335.

    Google Scholar 

  22. Moruzzi, V.L., Janak, J.F., and Williams, A.R., Calculated Electronic Properties of Metals, New York: Pergamon, 1978.

    Google Scholar 

  23. Demuth, J.E., Surf. Sci., 1977, vol. 65, p. 369.

    Google Scholar 

  24. Greuter, F., Struthy, I., Plummer, E.W., and Eberhardt, W., Phys. Rev. B: Condens. Matter, 1986, vol. 33, p. 736.

    Google Scholar 

  25. Cristmann, K., Behm, R.J., and Ertl, G., J. Chem. Phys., 1979, vol. 70, p. 4168.

    Google Scholar 

  26. Mattheiss, L.F. and Hamann, D.R., Phys. Rev. B: Condens. Matter, 1984, vol. 30, p. 1731.

    Google Scholar 

  27. Il'chenko, N.I., Kinet. Katal., 1973, vol. 14, p. 976.

    Google Scholar 

  28. Tsirlina, G.A. and Petrii, O.A., Elektrokhimiya, 1985, vol. 21, p. 706.

    Google Scholar 

  29. Pindor, A.J., Timmerman, W.M., Gyorffi, B.L., and Stocks, G.M., J. Phys. F: Met. Phys., 1980, vol. 10, p. 2617.

    Google Scholar 

  30. Ehrenreich, H. and Schwartz, L., The Electronic Structure of Alloys, vol. 31 of Solid State Physics, New York: Academic, 1976.

    Google Scholar 

  31. Vert, Zh.L. and Tverdovskii, I.P., Elektrokhimiya, 1982, vol. 18, p. 1055.

    Google Scholar 

  32. Maksimov, Yu.M., Bruners, R.U., and Podlovchenko, B.I., Elektrokhimiya, 1986, vol. 22, p. 1000.

    Google Scholar 

  33. Kelly, M.J. and Ponec, V., Prog. Surf. Sci., 1981, vol. 11, p. 139.

    Google Scholar 

  34. Stocks, G.M., Williams, R.W., and Faulkner, J.S., Phys. Rev. B: Condens. Matter, 1971, vol. 4, p. 4390.

    Google Scholar 

  35. Greuter, F. and Plummer, E.W., Solid State Commun., 1983, vol. 48, p. 37.

    Google Scholar 

  36. Alexander, C.S. and Pritchard, J., J. Chem. Soc., Faraday Trans. 1, 1972, vol. 68, p. 202.

    Google Scholar 

  37. Sulston, K.W., Davison, S.G., and Liu, W.K., Phys. Rev. B: Condens. Matter, 1986, vol. 33, p. 2263.

    Google Scholar 

  38. Makherjee, S., Moran-Lopes, J.L., Kumar, V., and Bennemann, K.H., Phys. Rev. B: Condens. Matter, 1982, vol. 25, p. 730.

    Google Scholar 

  39. Sinfelt, J.H., Carter, J.L., and Yates, D.J.C., J. Catalysis, 1972, vol. 24, p. 283.

    Google Scholar 

  40. Ponec, V., Catal. Rev., 1975, vol. 11, p. 41.

    Google Scholar 

  41. Landau, L.D. and Lifshits, E.M., Statisticheskaya fizika (Statistical Physics), Moscow: Nauka, 1976, part 1, p. 65.

  42. Tomanek, D., Makherjee, S., Kumar, V., and Benne-mann, K.H., Surf. Sci., 1982, vol. 114, p. 11.

    Google Scholar 

  43. Brongersma, H.H., Sparnaay, M.J., and Buck, T.M., Surf. Sci., 1978, vol. 71, p. 657.

    Google Scholar 

  44. Miedema, A.R., Z. Metallkd., 1978, vol. 69, p. 455.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Medvedev, I.G. To a Theory of Electrocatalysis for the Hydrogen Evolution Reaction: The Hydrogen Chemisorption Energy on the Transition Metal Alloys within the Anderson–Newns Model. Russian Journal of Electrochemistry 40, 1123–1131 (2004). https://doi.org/10.1023/B:RUEL.0000048643.54878.ed

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:RUEL.0000048643.54878.ed

Navigation