Abstract
Solid metals and their surfaces can trap or store energy; it appears, therefore, that, for any solid metal in aqueous media, there are two limiting types of surface electrochemistry, one relating to the equilibrated (low-energy) metal atoms, and the other, to the metastable (high-energy) metal atoms. With real metal surfaces, the low-energy state is usually dominant, but the metastable state behavior is often vital with regard to low coverage surface active site behavior. The most significant effects of surface metastability are that it lowers the oxidation potential of the atoms in this state to values within the double layer region and forms the basis of facile interfacial redox couples which often function as mediators in electrocatalytic processes. This rather novel approach was explored with regard to the electrocatalytic behavior of copper in base; the applicability of the approach to the three Group 11 metals (Cu, Ag, and Au) was illustrated, and its relevance to the use of platinum in fuel cell electrocatalysis was outlined.
This is a preview of subscription content, access via your institution.
REFERENCES
Hoare, J.P., The Electrochemistry of Oxygen, New York: Wiley, 1968, p. 13.
Pletcher, D., J. Appl. Electrochem., 1984, vol. 14, p. 403.
Burke, L.D., Electrochim. Acta, 1994, vol. 39, p. 1841.
Burke, L.D. and Nugent, P.F., Gold Bull., 1998, vol. 31, p. 39.
Burke, L.D., Collins, J.A., and Murphy, M.A., J. Solid State Electrochem., 1999, vol. 4, p. 34.
Haruta, M., Yamada, M., Kobayashi, T., and Iijima, S., J. Catal., 1989, vol. 115, p. 301.
Bond, G.C. and Thompson, D.T., Catal. Rev.–Sci. Eng., 1999, vol. 41, p. 319.
Taylor, H.S., Proc. Roy. Soc. Lond. A, 1925, vol. 108, p. 105.
Burke, L.D., Ahern, A.J., and O'Mullane, A.P., Gold Bull., 2002, vol. 35, p. 3.
Suryanarayana, C., Materials Science and Technology: A Comprehensive Treatment, Cahn, R.W., Haasen, P., and Kramer, E.J., Eds., Weinheim: VCH, 1991, vol. 15, p. 57.
Somorjai, G.A., Chem. Rev., 1996, vol. 96, p. 1223.
Spencer, M.S., Nature, 1986, vol. 323, p. 685.
Kornyshev, A.A. and Sumetskii, M., Electrochemical Nanotechnology, Lorenz, W.J. and Pleith, W., Eds., New York: Wiley–VCH, 1998, p. 45.
Savinova, E.R., Kraft, P., Pettinger, B., and Doblhofer, K., J. Electroanal. Chem., 1997, vol. 430, p. 47.
Shaikhutdinov, Sh.K., Savinova, E.R., Scheybal, A., Doblhofer, K., and Schlögl, R., J. Electroanal. Chem., 2001, vol. 500, p. 208.
Savinova, E.R., Zemlyanov, D., Pettinger, B., Scheybal, A., Schlögl, R., and Doblhofer, K., Electrochim. Acta, 2000, vol. 46, p. 175.
Burke, L.D. and Nugent, P.F., Electrochim. Acta, 1997, vol. 42, p. 399.
Hori, Y., Murata, A., and Takahashi, R., J. Chem. Soc. Faraday Trans., 1989, vol. 85, p. 2309.
Jermann, B. and Augustynski, J., Electrochim. Acta, 1994, vol. 39, p. 1891.
Burke, L.D. and Hurley, L.M., Electrochim. Acta, 1999, vol. 44, p. 3451.
Reed-Hill, R.E. and Abbaschian, A., in Physical Metallurgical Principles, Boston: PWS-Kent, 1992, 3rd ed., p. 227.
Buckley, D.N. and Ahmed, S., Electrochem. Solid State Lett., 2003, vol. 6, p. C33.
Andricacos, P.C., The Electrochem. Soc. Interface, 1999, vol. 8, p. 32.
Taiphaisitpongs, P., Cao, Y., and West, A.C., J. Electrochem. Soc., 2001, vol. 148, p. C492.
Pourbaix, M., Atlas of Electrochemical Equilibria in Aqueous Media, Oxford: Pergamon, 1966, p. 384.
Paatsch, W., Ber. Bunsen-Ges. Phys. Chem., 1977, vol. 81, p. 645.
Burke, L.D. and Collins, J.A., J. Appl. Electrochem., 1999, vol. 29, p. 1427.
Härtinger, S., Pettinger, B., and Doblhofer, K., J. Electroanal. Chem., 1995, vol. 29, p. 1427.
Marichev, V.A., Electrochim. Acta, 1996, vol. 41, p. 2551.
Burke, L.D. and O'Mullane, A.P., J. Solid State Electrochem., 2000, vol. 4, p. 285.
Droog, J.M.M., Alderliesten, C.A., Alderliesten, P.T., and Bootsma, G.A., J. Electroanal. Chem., 1980, vol. 111, p. 61.
Strehblow, H., Maurice, V., and Marcus, P., Electrochim. Acta, 2001, vol. 46, p. 3755.
Burke, L.D. and Murphy, M.A., J. Solid State Electrochem., 2001, vol. 5, p. 43.
Ibl, N., Advances in Electrochemistry and Electrochemical Engineering, Tobias, C.W., Ed., New York: Interscience, 1962, vol. 2, p. 49.
Ahern, A.J., Nagle, L.C., and Burke, L.D., J. Solid State Electrochem., 2002, vol. 6, p. 451.
Burke, L.D. and O'Dwyer, K.J., Electrochim. Acta, 1991, vol. 36, p. 1937.
Burke, L.D. and Healy, J.F., J. Electroanal. Chem., 1981, vol. 124, p. 327.
Henglein, A., Ber. Bunsen-Ges. Phys. Chem., 1997, vol. 101, p. 1562.
Jaycock, M. J. and Parfitt, G.D., Chemistry of Interfaces, Chichester: Horwood, 1981, p. 136.
Parsons, R. and VanderNoot, T., J. Electroanal. Chem., 1988, vol. 257, p. 9.
Burke, L.D. and Hurley, L.M., J. Solid State Electrochem., 2000, vol. 4, p. 353.
Burke, L.D. and Ahern, A.J., J. Solid State Electrochem., 2001, vol. 5, p. 553.
Parmigiani, F., Kay, E., and Bagus, P.S., J. Electron Spectrosc. Relat. Phenom., 1990, vol. 50, p. 39.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Burke, L.D., Kinsella, L.M. & O'Connell, A.M. Importance of Metastable States in Electrocatalytic Processes at Metal Surfaces in Aqueous Media. Russian Journal of Electrochemistry 40, 1105–1114 (2004). https://doi.org/10.1023/B:RUEL.0000048641.28024.0d
Issue Date:
DOI: https://doi.org/10.1023/B:RUEL.0000048641.28024.0d
- electrocatalysis
- metal
- copper
- platinum
- metastable state
- fuel cell