Skip to main content
Log in

Effect of Temperature on Reversible and Irreversible Processes during Lithium Intercalation in Graphite

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Effect of temperature on reversible and irreversible processes during lithium intercalation in graphite from 1 M LiClO4 solution in PC–DME is studied by galvanostatic cycling, cyclic voltammetry, and impedance spectroscopy. Reducing temperature diminishes both reversible and irreversible capacities. Conditions for the passive-film formation on graphite are discussed. If several first cycles are run at a negative temperature, the overall charge spent irreversibly decreases if the temperature is then elevated. The lower the initial-cycling temperature, the smaller the overall irreversible capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Tarascon, J.M. and Guyomard, D., Electrochim. Acta, 1993, vol. 39, p. 1221.

    Google Scholar 

  2. Brandt, K., J. Power Sources, 1995, vol. 54, p. 151.

    Google Scholar 

  3. Megahed, S. and Ebner, W., J. Power Sources, 1995, vol. 54, p. 155.

    Google Scholar 

  4. Peled, E., Menachem, C., Bar-Tow, D., and Melman, A., J. Electrochem. Soc., 1996, vol. 143, p. 4.

    Google Scholar 

  5. Menachem, C., Peled, E., Burstein, L., and Rosenberg, Y., J. Power Sources, 1997, vol. 68, p. 227.

    Google Scholar 

  6. Ein-Eli, Y. and Koch, V., J. Electrochem. Soc., 1997, vol. 144, p. 2968.

    Google Scholar 

  7. Prem, K.T., Manuel, S.A., Thayananth, P., Subramanian, V., Gopukumar, S., Renganathan, N.G., Raghavan, M., and Muniyandi, N., J. Power Sources, 2001, vol. 97-98, p. 118.

    Google Scholar 

  8. Kulova, T.L., Kanevskii, L.S., Skundin, A.M., Asryan, A.N., Bondarenko, G.N., and Sklovskii, D.E., Elektrokhimiya, 2001, vol. 37, p. 1179.

    Google Scholar 

  9. Wang, H. and Yoshio, M., J. Power Sources, 2001, vol. 101, p. 35.

    Google Scholar 

  10. Buqa, H., Golob, P., Winter, M., and Besenhard, J.O., J. Power Sources, 2001, vol. 97-98, p. 122.

    Google Scholar 

  11. Buqa, H., Grogger, Ch., Alvarez Santis, M.V., Besenhard, J.O., and Winter, M., J. Power Sources, 2001, vol. 97-98, p. 126.

    Google Scholar 

  12. Shiao, H.-C., Chua, D., Lin, H.-P., Slane, S., and Salomon, M., J. Power Sources, 2000, vol. 87, p. 167.

    Google Scholar 

  13. Plichta, E.J. and Behl, W.K., J. Power Sources, 2000, vol. 88, p. 192.

    Google Scholar 

  14. Huang, C.-K., Sakamoto, J.S., Wolfenstine, J., and Surampudi, S., J. Electrochem. Soc., 2000, vol. 147, p. 2893.

    Google Scholar 

  15. Wang, C., Appleby, A.J., and Little, F.E., J. Electrochem. Soc., 2002, vol. 149, p. 754.

    Google Scholar 

  16. Herreyre, S., Huchet, O., Barusseau, S., Perton, F., Bodet, J.M., and Biensan, P., J. Power Sources, 2001, vol. 97-98, p. 576.

    Google Scholar 

  17. Zhang, S.S., Jow, T.R., Amine, K., and Henriksen, G.L., J. Power Sources, 2002, vol. 107, p. 18.

    Google Scholar 

  18. Katayama, N., Kawamura, T., Baba, Y., and Yamaki, J.-I., J. Power Sources, 2002, vol. 109, p. 321.

    Google Scholar 

  19. Zhang, S.S., Xu, K., Allen, J.L., and Jow, T.R., J. Power Sources, 2002, vol. 110, p. 216.

    Google Scholar 

  20. Fan, J., J. Power Sources, 2003, vol. 117, p. 170.

    Google Scholar 

  21. Blomgren, G.E., J. Power Sources, 2003, vol. 119-121, p. 326.

    Google Scholar 

  22. Vetter, J. and Novak, P., J. Power Sources, 2003, vol. 119-121, p. 338.

    Google Scholar 

  23. Jow, T.R., Ding, M.S., Xu, K., Zhang, S.S., Allen, J.L., Amine, K., and Henriksen, G.L., J. Power Sources, 2003, vol. 119-121, p. 343.

    Google Scholar 

  24. Smart, M.C., Ratnakumar, B.V., Whitcanack, L.D., Chin, K.B., Surampudi, S., Croft, H., Tice, D., and Staniewicz, R., J. Power Sources, 2003, vol. 119-121, p. 349.

    Google Scholar 

  25. Levi, M.D., Wang, C., Gnanaraj, J.S., and Aurbach, D., J. Power Sources, 2003, vol. 119-121, p. 538.

    Google Scholar 

  26. Khimicheskaya entsiklopediya (Encyclopedia of Chemistry), Moscow: Bol'shaya Rossiiskaya Entsiklopediya, 1995, vol. 4.

  27. Kedrinskii, I.A., Dmitrienko, V.E., Povarov, Yu.M., and Grudyanov, I.I., Khimicheskie istochniki toka s litievym elektrodom (Chemical Power Sources with Lithium Electrodes), Krasnoyarsk: Krasnoyarsk. Gos. Univ., 1983.

    Google Scholar 

  28. Characterization of Solutes in Nonaqueous Solvents, Mamantov, G., Ed., New York: Plenum, 1978.

    Google Scholar 

  29. Bagotzky, V.S. and Skundin, A.M., Khimicheskie istoch-niki toka (Chemical Power Sources), Moscow: Energiya, 1981.

    Google Scholar 

  30. Karapetyan, Yu.A. and Eichis, V.N., Fiziko-khimicheskie svoistva elektrolitnykh nevodnykh rastvorov (Physicochemical Properties of Nonaqueous Electrolytes), Moscow: Khimiya, 1989.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kulova, T.L. Effect of Temperature on Reversible and Irreversible Processes during Lithium Intercalation in Graphite. Russian Journal of Electrochemistry 40, 1052–1059 (2004). https://doi.org/10.1023/B:RUEL.0000046490.73990.c3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:RUEL.0000046490.73990.c3

Navigation