Skip to main content
Log in

On the Role Played by Dimers of Radical Cations in the Process of Electrochemical Oxidation–Reduction of Polyaniline: The Data that Were Obtained Using the Method of Cyclic Voltabsorptometry in the Presence of Counteranions of a Diverse Nature

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

The electrochemical oxidation–reduction of films of polyaniline is studied in the presence of various counteranions. The differential cyclic voltabsorptometric (DCVA) curves (dA/dt relative to potential, where A is the optical absorption) are recorded at characteristic wavelengths corresponding to individual spectrum components previously isolated with the Alentsev–Fok method. The DCVA curves for aqueous solutions of HCl, HClO4, and H2SO4 at different potential scan rates are compared to traditional cyclic voltammograms. For the DCVA curves obtained at 665 nm discovered is one broad peak of dA/dt in the region of potentials between the first and second stages of polyaniline oxidation ( 0.6 V vs. Ag/AgCl). An assumption is made about a chemical nature of the process of generation of absorption in this spectral region, which, more likely than not, is connected with the emergence of dimers of radical cations of polyaniline. It is discovered that the electrochemical processes in the region of potentials that correspond to the first stage of oxidation give rise to variations in the absorption inside several regions of spectrum: 435 nm (radical cations) and 755 nm (localized polarons). An assumption is made that the first peak of the current corresponds to several successive processes that occur in a polyaniline molecule in the course of oxidation as well as to the existence of heterogeneous regions where the generation of localized polarons proceeds at different rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Heineman, W.R., Hawkridge, F.M., and Blount, H.N., Electroanalytical Chemistry, Bard, A.J., Ed., New York: Marcel Dekker, 1984, vol. 13, p. 1.

    Google Scholar 

  2. Kuzmany, H. and Sariciftci, N.S., Synth. Met., 1987, vol. 18, p. 353.

    Google Scholar 

  3. Kalaji, M. and Peter, L.M., J. Chem. Soc., Faraday Trans., 1991, vol. 87, p. 853.

    Google Scholar 

  4. Malinauskas, A. and Holze, R., Synth. Met., 1998, vol. 97, p. 31.

    Google Scholar 

  5. Aoki, K. and Teragishi, Y., J. Electroanal. Chem., 1998, vol. 441, p. 25.

    Google Scholar 

  6. Aoki, K., Edo, T., and Cao, J., Electrochim. Acta, 1998, vol. 43, p. 285.

    Google Scholar 

  7. Stilwell, D.E. and Park, S.-M., J. Electrochem. Soc., 1989, vol. 136, p. 427.

    Google Scholar 

  8. Lapkowski, M., Bull. Electrochem., 1989, vol. 5, p. 792.

    Google Scholar 

  9. Gazotti, W.A., Jannini, M.J.D.M., De Torresi, S.I.C., and De Paoli, M.A., J. Electroanal. Chem., 1997, vol. 440, p. 193.

    Google Scholar 

  10. Visy, C., Krivan, E., and Peintler, G., J. Electroanal. Chem., 1999, vol. 462, p. 1.

    Google Scholar 

  11. Nekrasov, A.A., Ivanov, V.F., and Vannikov, A.V., Abstracts of Papers, 50th ISE Meet., September 5–10, 1999, Pavia (Italy), Symp. 3b, abs. no. 484.

  12. Nekrasov, A.A., Ivanov, V.F., and Vannikov, A.V., J. Electroanal. Chem., 2000, vol. 482, p. 11.

    Google Scholar 

  13. Nekrasov, A.A., Ivanov, V.F., and Vannikov, A.V., Elektrokhimiya, 2000, vol. 36, p. 1001.

    Google Scholar 

  14. Nekrasov, A.A., Ivanov, V.F., and Vannikov, A.V., Electrochim. Acta, 2001, vol. 46, p. 4051.

    Google Scholar 

  15. Nekrasov, A.A., Ivanov, V.F., and Vannikov, A.V., Electrochim. Acta, 2001, vol. 46, p. 3301.

    Google Scholar 

  16. Tanaka, J., Mashita, N., Mizoguchi, K., and Kume, K., Synth. Met., 1989, vol. 29, p. 175.

    Google Scholar 

  17. Genies, E.M., Lapkowski, M., and Tsintavis, C., New J. Chem., 1988, vol. 12, p. 181.

    Google Scholar 

  18. Neudeck, A., Petr, A., and Dunsch, L., Synth. Met., 1999, vol. 107, p. 143.

    Google Scholar 

  19. Zheng, W., Min, Y., MacDiarmid, A.G., Angelopoulos, M., Liao, Y.H., and Epstein, A.J., Synth. Met., 1997, vol. 84, p. 63.

    Google Scholar 

  20. Bernard, M.C., Bich, V.T., deTorresi, S.C., and Hugot-Le Goff, A., Synth. Met., 1997, vol. 84, p. 785.

    Google Scholar 

  21. Magon, C.J., Desouza, R.R., Costa, A.J., Vidoto, E.A., Faria, R.M., and Nascimento, O.R., J. Chem. Phys., 2000, vol. 112, p. 2958.

    Google Scholar 

  22. Zotti, G., Schiavon, G., and Zecchin, S., Synth. Met., 1995, vol. 72, p. 275.

    Google Scholar 

  23. Semenikhin, O.A., Ovsyannikova, E.V., Ehrenburg, M.R., Alpatova, N.M., and Kazarinov, V.E., J. Electroanal. Chem., 2000, vol. 494, p. 1.

    Google Scholar 

  24. Ivanov, V.F., Kucherenko, Yu.A., and Vannikov, A.V., Elektrokhimiya, 1993, vol. 29, p. 1146.

    Google Scholar 

  25. Ivanov, V.F. and Grishina, A.D., Izv. Akad. Nauk SSSR, 1977, p. 1873.

  26. Vorotyntsev, M.A. and Heinze, J., Electrochim. Acta, 2001, vol. 46, p. 3309.

    Google Scholar 

  27. Abd-Elwahed, A. and Holze, R., Synth. Met., 2002, vol. 131, p. 61.

    Google Scholar 

  28. Ivanov, V.F., Kucherenko, Yu.A., Nekrasov, A.A., and Vannikov, A.V., Bull. Electrochem., 1992, vol. 8, p. 278.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nekrasov, A.A., Ivanov, V.F., Gribkova, O.L. et al. On the Role Played by Dimers of Radical Cations in the Process of Electrochemical Oxidation–Reduction of Polyaniline: The Data that Were Obtained Using the Method of Cyclic Voltabsorptometry in the Presence of Counteranions of a Diverse Nature. Russian Journal of Electrochemistry 40, 249–258 (2004). https://doi.org/10.1023/B:RUEL.0000019661.08569.28

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:RUEL.0000019661.08569.28

Navigation