Skip to main content
Log in

Calculation of the Liquid and Gas Permeability of Hydrophobic Low-Porosity Membranes of an Arbitrary Thickness

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

A method for calculating the liquid and gas permeability of hydrophobic low-porosity membranes of an arbitrary thickness is described. The calculation is based on the solution of a problem on percolation—the procedure of finding the distribution of liquid and gas over the membrane thickness. The dependence of the permeability for liquid on the share of pores that are potentially accessible to being filled with liquid is obtained for both thin and thick membranes. This dependence is of a universal nature and can easily be recalculated into a dependence of permeability on the pressure drop for membranes with any distribution of pores by size. Numerical estimates of principal characteristics for a membrane that possesses pores of three types are performed. The characteristics in question include permeabilities for liquid and gas; fluxes of the liquid; critical pressures, at which the permeability for liquid turns other than zero; and the working range of pressures, in which the membrane is capable of working normally. All these data permit the optimization of the operation of similar membranes, in particular, gas-delivering membranes that are used in hydrogen–oxygen fuel cells with a solid polymer electrolyte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Berezkin, V.V., Vasil'ev, A.B., Oleinikov, V.A., and Mchedlishvili, B.V., Fizicheskaya kristallografiya (Physical Crystallography), Moscow: Nauka, 1992, p. 43.

    Google Scholar 

  2. Ritter, H.L. and Drake, L.C., Ind. Eng. Chem. Analyt. Ed., 1945, vol. 17, p. 782.

    Google Scholar 

  3. Lykov, A.V., Teplomassoobmen (Heat and Mass Transfer), Moscow: Energiya, 1972.

    Google Scholar 

  4. Hwang, S.-T. and Kammermeyer, K., Techniques of Chemistry, vol. 7: Membranes in Separations, New York: Wiley, 1975.

    Google Scholar 

  5. Aksel'rud, G.A. and Al'tshuller, M.A., Vvedenie v kapillyarno-khimicheskuyu tekhnologiyu (The Capillary-Chemical Technology: An Introduction), Moscow: Khimiya, 1983.

    Google Scholar 

  6. Mulder, M., Basic Principles of Membrane Technology, Dordrecht: Kluwer, 1996.

    Google Scholar 

  7. Broadbent, S.R. and Hammersley, J.M., Proc. Cambr. Phil. Soc., 1971, vol. 20, p. 235.

    Google Scholar 

  8. Shante, V.K.S. and Kirkpatrick, S., Adv. Phys., 1971, vol. 20, p. 325.

    Google Scholar 

  9. Phase Transitions and Critical Phenomena, Domb, C. and Green, M.S., Eds., London: Academic, 1972, vol. 2, p. 208.

    Google Scholar 

  10. Shklovskii, B.I. and Efros, A.L., Elektronnye svoistva legirovannykh poluprovodnikov (Electronic Properties of Doped Semiconductors), Moscow: Nauka, 1979.

    Google Scholar 

  11. Efros, A.L., Fizika i geometriya besporyadka (The Physics and Geometry of Disorder), Moscow: Nauka, 1982.

    Google Scholar 

  12. Kesten, H., Percolation Theory for Mathematicians, Boston: Birkhauser, 1982.

    Google Scholar 

  13. Sokolov, I.M., Usp. Fiz. Nauk, 1986, vol. 150, p. 221.

    Google Scholar 

  14. Mason, G., Character. Porous Solids, 1988, vol. 39, p. 32.

    Google Scholar 

  15. Chirkov, Yu.G. and Rostokin, V.I., Elektrokhimiya, 1981, vol. 17, p. 1123.

    Google Scholar 

  16. Chirkov, Yu.G., Rostokin, V.I., and Rusakov, V.A., Elektrokhimiya, 1983, vol. 19, p. 828.

    Google Scholar 

  17. Chirkov, Yu.G., Elektrokhimiya, 1999, vol. 35, p. 1449.

    Google Scholar 

  18. Chirkov, Yu.G. and Rostokin, V.I., Elektrokhimiya, 2002, vol. 38, p. 1437.

    Google Scholar 

  19. Chizmadzhev, Yu.A., Markin, V.S., Tarasevich, M.R., and Chirkov, Yu.G., Makrokinetika protsessov v poristykh sredakh: Toplivnye elementy (The Macrokinetics of Processes in Porous Materials: Fuel Cells), Moscow: Nauka, 1971.

    Google Scholar 

  20. Solid Polymer Electrolyte Fuel Cell Technology Program, Test Report BU#1 and BU#2 (1.1ft2), Contract NAS 9-15286, Direct Energy Conversion Programs, General Electric Co., TRP-76, May 1980.

  21. Raistrick, I.D., US Patent 4876115, 1989; Raistrick, I.D., Proc. Symp. Diaphragms, Separators, and Ion Exchange Membranes, Van Zee, J.W., White, R.E., Kinoshita, K., and Burney, H.S., Eds., The Electrochemical Society, 1986, p. 172.

  22. Lemons, R., J. Power Sources, 1990, vol. 29, p. 251.

    Google Scholar 

  23. Timonov, A.M., Soros. Obrazov. Zh., 2000, no. 8, p. 69.

    Google Scholar 

  24. Berezina, N.P., Soros. Obrazov. Zh., 2000, no. 9, p. 37.

    Google Scholar 

  25. LaConti, A.B., Fragala, A.R., and Boyack, J.R., Electrodes Materials and Processes for Energy Conversion and Storage, McIntyre, J.D.E., Srinivasan, S., and Will, F.G., Eds., New York: The Electrochem. Soc., 1977, p. 354.

    Google Scholar 

  26. Eisman, G.A., Diaphragms, Separators, and Ion Exchange Membranes, Van Zee, J.W., White, R.E., Kinoshita, K., and Burney, H.S., Eds., New York: The Electrochem. Soc., 1986, p. 156.

    Google Scholar 

  27. Verbrugge, M. and Hill, R., J. Phys. Chem., 1988, vol. 92, p. 6778.

    Google Scholar 

  28. Verbrugge, M., J. Electrochem. Soc., 1989, vol. 136, p. 417.

    Google Scholar 

  29. Hill, R. and Verbrugge, M., J. Electrochem. Soc., 1990, vol. 137, pp. 886, 893.

    Google Scholar 

  30. Zawodzinski, T.A., Neeman, M., Sillerud, L.D., and Gottesfeld, S., J. Phys. Chem., 1991, vol. 95, p. 6040.

    Google Scholar 

  31. Springer, T.E., Zawodzinski, T.A., and Gottesfeld, S., J. Electrochem. Soc., 1991, vol. 138, p. 2334.

    Google Scholar 

  32. Zawodzinski, T.A., Gottesfeld, S., Shoichet, M.S., and McCarthy, T.J., J. Appl. Electrochem., 1993, vol. 23, p. 86.

    Google Scholar 

  33. Zawodzinski, T.A., Springer, T.E., Uribe, F.A., and Gottesfeld, S., Solid State Ionics, 1993, vol. 60, p. 199.

    Google Scholar 

  34. Zawodzinski, T.A., Derouin, C., Radzinski, S., Sherman, R.J., Smith, V.T., Springer, T.E., and Gottesfeld, S., J. Electrochem. Soc., 1993, vol. 140, p. 1041.

    Google Scholar 

  35. Zawodzinski, T.A., Springer, T.E., Davey, J., Jestel, R., Lopez, C., Valerio, J., and Gottesfeld, S., J. Electrochem. Soc., 1993, vol. 140, p. 1981.

    Google Scholar 

  36. Wilson, M.S., DeCaro, D., Zawodzinski, T., and Gottesfeld, S., 192nd Meet. of the Electrochem. Soc., 1997, vol. 97–2, p. 72.

    Google Scholar 

  37. Carrette, L., Friedrich, K.A., and Stimming, U., Fuel Cells, 2001, vol. 1, p. 5.

    Google Scholar 

  38. Bernardi, D. and Verbrugge, M., J. Electrochem. Soc., 1992, vol. 139, p. 2477.

    Google Scholar 

  39. Paganin, V.A., Ticianelli, E.A., and Gonzalez, E.R., J. Appl. Electrochem., 1996, vol. 26, p. 297.

    Google Scholar 

  40. Nguyen, T.V., J. Electrochem. Soc., 1996, vol. 143, L103.

    Google Scholar 

  41. MacLeod, E.N., US Patent 4215183, 1980.

  42. Strasser, K., J. Power Sources, 1992, vol. 37, p. 209.

    Google Scholar 

  43. Wilson, M.S., Valerio, J.A., and Gottesfeld, S., Electrochim. Acta, 1995, vol. 40, p. 355.

    Google Scholar 

  44. Chirkov, Yu.G., Doctoral (Chem.) Dissertation, Moscow: Frumkin Inst. of Electrochem., Russian Academy of Sciences, 1974.

    Google Scholar 

  45. Niedrach, L.W. and Alford, H.R., J. Electrochem. Soc., 1965, vol. 112, p. 117.

    Google Scholar 

  46. Halderman, R., Colman, W., and Langer, S., Fuel Cell Systems, Washington: American Chemical Society, Advances in Chemistry Series, 1965, vol. 47, p. 106.

    Google Scholar 

  47. Will, F.G. and BenDaniel, D.J., J. Electrochem. Soc., 1969, vol. 116, p. 933.

    Google Scholar 

  48. Bagotskii, V.S., Shteinberg, G.V., Urisson, N.A., Mokrousov, L.N., Astakhov, I.I., Kudryavtseva, Z.I., and Baranov, A.P., Elektrokhimiya, 1970, vol. 6, p. 1045.

    Google Scholar 

  49. Burshtein, R.Kh., Dribinskii, A.V., Kryukov, Yu.I., Pshenichnikov, A.G., and Tarasevich, M.R., Elektrokhimiya, 1970, vol. 6, p. 1356.

    Google Scholar 

  50. Dribinskii, A.V., Tarasevich, M.R., and Burshtein, R.Kh., Elektrokhimiya, 1971, vol. 7, p. 1144.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chirkov, Y.G., Rostokin, V.I. Calculation of the Liquid and Gas Permeability of Hydrophobic Low-Porosity Membranes of an Arbitrary Thickness. Russian Journal of Electrochemistry 40, 158–169 (2004). https://doi.org/10.1023/B:RUEL.0000016329.16898.bd

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:RUEL.0000016329.16898.bd

Navigation