Skip to main content
Log in

Complexation and Pd-Catalyzed Asymmetric Allylation with Participation of Chiral Ferrocenyliminophosphites

  • Published:
Russian Journal of Coordination Chemistry Aims and scope Submit manuscript

Abstract

Chiral ferrocene-containing iminoarylphosphite ligands based on 4,4′-dimethoxy-6,6′-di-tert-butyl-biphenyldiol-2,2′ and their chelate complexes with Rh(I) and Pd(II) were synthesized for the first time. They were shown to be perspective reagents in the reactions of asymmetric allyl substitution. The Pd-catalyzed alkylation of 1,3-diphenylallylacetate with dimethyl malonate results in a 87% enantiomer excess (ee), while in sulfonylation of 1,3-diphenylallylacetate with sodium para-toluenesulfinite, this figure amounts to 67%. The results obtained were compared with coordination and catalytic efficiency of a less sterically hindered ferro-cenyliminophosphite based on pyrocatechol. The compositions and structures of new compounds were determined by the 1H, 13C, 31P NMR, IR, mass spectrometry (EI, FAB, and electrospray techniques), and elemental analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Ansell, J. and Wills, M., Chem. Soc. Rev., 2002, vol. 31, no. 5, p. 259.

    PubMed  Google Scholar 

  2. Alexakis, A. and Benhaim, C., Eur. J. Org. Chem., 2002, no. 19, p. 3221.

  3. Molt, O. and Schrader, T., Synthesis, 2002, no. 18, p. 2633.

    Google Scholar 

  4. Gavrilov, K.N. and Polosukhin, A.I., Usp. Khim., 2000, vol. 69, no.8, p. 721.

    Google Scholar 

  5. Reetz, M.T., Mehler, G., Meiswinkel, A., and Sell, T., Tetrahedron Lett., 2002, vol. 43, no. 44, p. 7941.

    Google Scholar 

  6. Fache, F., Schulz, E., Tommasino, M.L., and Lemaire, M., Chem. Rev., 2000, vol. 100, no. 6, p. 2159.

    PubMed  Google Scholar 

  7. Arena, C.G., Drommi, D., and Faraone, F., Tetrahedron: Asymmetry, 2000, vol. 11, no. 13, p. 2765.

    Google Scholar 

  8. Arena, C.G., Drommi, D., and Faraone, F., Tetrahedron: Asymmetry, 2000, vol. 11, no. 23, p. 4753.

    Google Scholar 

  9. Delapierre, G., Brunel, J.M., Constantieux, T., and Buono, G., Tetrahedron: Asymmetry, 2001, vol. 12, no. 9, p. 1345.

    Google Scholar 

  10. Gladiali, S., Loriga, G., Medici, S., and Taras, R., J. Mol. Catal., A: Chemical, 2003, vol. 196, nos.1–2, p. 27.

    Google Scholar 

  11. Polosukhin, A.I., Bondarev, O.G., Lyubimov, S.E., et al., Tetrahedron: Asymmetry, 2001, vol. 12, no. 15, p. 2197.

    Google Scholar 

  12. Hilgraf, R. and Pfaltz, A., Synlett, 1999, no. 11, p. 1814.

    Google Scholar 

  13. Gavrilov, K.N., Bondarev, O.G., Lebedev, R.V., et al., J. Organomet. Chem., 2002, vol. 655, nos. 1–2, p. 204.

    Google Scholar 

  14. Gavrilov, K.N., Bondarev, O.G., Lebedev, R.V., et al., Eur. J. Inorg. Chem., 2002, no. 6, p. 1367.

    Google Scholar 

  15. Yao, S., Meng, J.-C., Siuzdak, G., and Finn, M.G., J. Org. Chem., 2003, vol. 68, no. 7, p. 2540.

    PubMed  Google Scholar 

  16. Dai, L.-X., Tu, T., You, S-L., et al., Acc. Chem. Res., 2003, vol. 36, no. 9, p. 659.

    PubMed  Google Scholar 

  17. Rooy van, A., Kamer, P.C.J., Leeuwen van, P.W.N.M., et al., Organometallics, 1996, vol. 15, no. 2, p. 835.

    Google Scholar 

  18. Diequez, M., Ruiz, A., and Claver, C., Tetrahedron: Asymmetry, 2001, vol. 12, no. 20, p. 2827.

    Google Scholar 

  19. Francio, G., Arena, C.G., Faraone, F., et al., Eur. J. Inorg. Chem., 1999, no. 8, p. 1219.

    Google Scholar 

  20. Gavrilov, K.N., Bondarev, O.G., Tsarev, V.N., et al., Izv. Ross. Akad. Nauk, Ser. Khim., 2003, no. 1, p. 116.

    Google Scholar 

  21. Polosukhin, A.I., Kovalevskii, A.Yu., and Gavrilov, K.N., Koord. Khim., 1999, vol. 25, no. 11, p. 812.

    Google Scholar 

  22. Gavrilov, K.N., Korostylev, A.V., Timofeeva, G.I., et al., Koord. Khim., 1998, vol. 24, no. 8, p. 610.

    Google Scholar 

  23. Polosukhin, A.I., Gavrilov, K.N., Bondarev, O.G., et al., J. Organomet. Chem., 2000, vol. 608, nos. 1–2, p. 89.

    Google Scholar 

  24. Kodama, H., Taiji, T., Ohta, T., and Furukawa, I., Tetra-hedron: Asymmetry, 2000, vol. 11, no. 19, p. 4009.

    Google Scholar 

  25. Nifant'ev, E.E. and Zavalishina, A.I., Khimiya, elemen-toorganicheskikh soedinenii (Chemistry of Organoele-ment Compounds), Moscow: MGPI im. V.I. Lenina, 1980, p. 58.

    Google Scholar 

  26. McCleverty, J.A. and Wilkinson, G., Inorg. Synth., 1966, vol. 8, p. 211.

    Google Scholar 

  27. Auburn, P.R., McKenzie, P.B., and Bosnich, B., J. Am. Chem. Soc., 1985, vol. 107, no. 7, p. 2033.

    Google Scholar 

  28. Bondarev, O.G., Gavrilov, K.N., Tsarev, V.N., et al., Izv. Ross. Akad. Nauk, Ser. Khim., 2002, no. 3, p. 484.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gavrilov, K.N., Tsarev, V.N., Lubimov, S.E. et al. Complexation and Pd-Catalyzed Asymmetric Allylation with Participation of Chiral Ferrocenyliminophosphites. Russian Journal of Coordination Chemistry 30, 685–691 (2004). https://doi.org/10.1023/B:RUCO.0000043891.44863.9e

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:RUCO.0000043891.44863.9e

Keywords

Navigation