Skip to main content
Log in

Phosphasila-, phosphagerma-, and phosphaarsaallenes --P=C=E (E = Si, Ge, As) and arsa- and diarsaallenes --As=C=E" (E" = C, As)

  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The paper reviews the contribution from our group to the studies of heteroallenes. The transient 1,3-phosphasilaallene ArP=C=Si(Ph)Tip (Ar = 2,4,6-tri-tert-butylphenyl, Tip = 2,4,6-triisopropylphenyl) and 1,3-phosphagermaallene ArP=C=GeMes2 (Mes = 2,4,6-trimethylphenyl) were characterized below –40 °C by NMR spectroscopy and chemical trapping. These compounds dimerize above –40 °C through two routes. With increased steric hindrance on germanium, the phosphagermaallene ArP=C=Ge(But)Tip was stabilized as monomer at room temperature. 3-Chloro-2-lithio-1,3-phosphasilapropene ArP=C(Li)Si(Cl)CMeR2 (CMeR2 = 9-methylfluorenyl) behaves, at least in some cases, as a synthetic equivalent of the functionalizable allene ArP=C=Si(Cl)CMeR2. Arsaallene ArAs=C=CR2, phosphaarsaallenes ArP=C=AsAr and ArP=C=AsDmt (Dmt = 2,6-dimesityl-4-methylphenyl), and diarsaallene ArAs=C=AsAr exhibit a higher thermal, air, and moisture stability than the above phosphasilaallenes and phosphagermaallenes. The physicochemical data for the arsaallenes and diarsaallenes, particularly, their X-ray structural parameters, display a bonding system close to allenes. On going down the Periodic table, the stabilization becomes more difficult. For this reason, tin allenic derivatives are very rare and antimony allenic compounds have not yet been isolated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. (a) K. S. Pitzer, J. Am. Chem. Soc., 1948, 70, 2140; (b) R. S. Mulliken, J. Am. Chem. Soc., 1950, 72, 4493.

    Google Scholar 

  2. M. Yoshifuji, I. Shima, N. Inamoto, K. Hirotsu, and T. Higuchi, J. Am. Chem. Soc., 1981, 103, 4587; 1982, 104, 6167.

    Google Scholar 

  3. A. G. Brook, F. Abdesaken, B. Gutekunst, G. Gutekunst, and R. K. Kallury, J. Chem. Soc., Chem. Commun., 1981, 191.

  4. R. West, M. J. Fink, and J. Michl, Science, 1981, 214, 1343.

    Google Scholar 

  5. (a) J. Escudié, C. Couret, J. Satgé, M. Andrianarison, and J. D. Andriamizaka, J. Am. Chem. Soc., 1985, 107, 3378; (b) M. Dräger, J. Escudié, C. Couret, H. Ranaivonjatovo, and J. Satgé, Organometallics, 1988, 7, 1010.

    Google Scholar 

  6. C. Couret, J. Escudié, J. Satgé, A. Raharinirina, and J. D. Andriamizaka, J. Am. Chem. Soc., 1985, 107, 8280.

    Google Scholar 

  7. (a) C. Couret, J. Escudié, J. Satgé, and M. Lazraq, J. Am. Chem. Soc., 1987, 109, 4411; (b) M. Lazraq, J. Escudié, C. Couret, J. Satgé, M. Dräger, and R. A. Dammel, Angew. Chem., Int. Ed. Engl., 1988, 27, 828.

    Google Scholar 

  8. G. Anselme, H. Ranaivonjatovo, J. Escudié, C. Couret, and J. Satgé, Organometallics, 1992, 11, 2748.

    Google Scholar 

  9. M. A. Chaubon, J. Escudié, H. Ranaivonjatovo, and J. Satgé, J. Chem. Soc., Chem. Commun., 1996, 2621.

  10. J. Escudié, C. Couret, H. Ranaivonjatovo, and J. G. Wolf, Tetrahedron Lett., 1983, 24, 3625.

    Google Scholar 

  11. (a) C. Couret, J. Escudié, Y. Madaule, H. Ranaivonjatovo, and J. G. Wolf, Tetrahedron Lett., 1983, 24, 2769; (b) A. H. Cowley, N. C. Norman, and M. Pakulski, J. Chem. Soc., Dalton Trans., 1985, 383.

    Google Scholar 

  12. (a) G. Raabe, and J. Michl, Chem. Rev., 1985, 85, 419; (b) G. Raabe and J. Michl, in The Chemistry of Organic Silicon Compounds, Eds S. Patai and Z. Rappoport, J. Wiley and Sons, New York, 1989, Ch. 17, p. 1015; (c) A. G. Brook and K. M. Baines, Adv. Organomet. Chem., 1986, 25, 1; (d) A. G. Brook and M. A. Brook, Adv. Organomet. Chem., 1996, 39, 71; (e) M. A. Chaubon, H. Ranaivonjatovo, J. Escudié, and J. Satgé, Main Group Metal Chem., 1996, 19, 145; (f) T. Müller, W. Ziehe, and N. Auner, in The Chemistry of Organic Silicon Compounds, Eds S. Patai and Z. Rappoport, Wiley, New York, 1998, 2, P. 2, Ch. 16, p. 857; (g) P. P. Power, Chem. Rev., 1999, 99, 3463; (h) A. Sekiguchi and V. Ya. Lee, Chem. Rev., 2003, 103, 1429; (i) R. West, Polyhedron, 2002, 21, 467; (j) M. Weidenbruch, J. Organomet. Chem., 2002, 646, 39; (k) M. Driess and H. Grützmacher, Angew. Chem., Int. Ed. Engl., 1996, 35, 828.

    Google Scholar 

  13. (a) J. Barrau, J. Escudié, and J. Satgé, Chem. Rev., 1990, 90, 283; (b) J. Escudié, C. Couret, H. Ranaivonjatovo, and J. Satgé, Coord. Chem. Rev., 1994, 130, 427; (c) J. Escudié and H. Ranaivonjatovo, Adv. Organomet. Chem., 1999, 44, 113; (d) J. Escudié, C. Couret, and H. Ranaivonjatovo, Coord. Chem. Rev., 1998, 178-180, 565; (e) K. M. Baines and W. G. Stibbs, Adv. Organomet. Chem., 1996, 39, 275.

    Google Scholar 

  14. (a) S. Lochschmidt and L. A. Schmidpeter, Phosphorus Sulfur, 1986, 29, 73; (b) R. Appel and F. Knoll, Adv. Inorg. Chem., 1989, 33, 259; (c) L. N. Markovskii, V. D. Romanenko, Zh. Obshch. Khim., 1986, 56, 221 [J. Gen. Chem. USSR, 1986, 56 (Engl. Transl.)]; (d) L. N. Markovski and V. D. Romanenko, Tetrahedron, 1989, 45, 6019; (e) L. Weber, Angew. Chem., Int. Ed. Engl., 1996, 35, 271; (f) L. Weber, Eur. J. Inorg. Chem., 2000, 2425; (g) R. Appel, in Multiple Bonds and Low Coordination in Phosphorus Chemistry, Eds M. Regitz and O. J. Scherer, Thieme, Stuttgart, 1990, p. 157.

    Google Scholar 

  15. L. Weber, Chem. Ber., 1996, 129, 367.

    Google Scholar 

  16. (a) J. Escudié, H. Ranaivonjatovo, and L. Rigon, Chem. Rev., 2000, 100, 3639; (b) B. Eichler and R. West, Adv. Organomet. Chem., 2001, 46, 1.

    Google Scholar 

  17. R. Appel, C. Casser, and M. Immenkeppel, Tetrahedron Lett., 1985, 26, 3551.

    Google Scholar 

  18. (a) S. J. Goede and F. Bickelhaupt, Chem. Ber., 1991, 124, 2677; (b) M. Yoshifuji, H. Kawanami, Y. Kawai, K. Toyota, M. Yasunami, T. Niitsu, and N. Inamoto, Chem. Lett., 1992, 1053; (c) M. van der Sluis, J. B. Wit, and F. Bickelhaupt, Organometallics, 1996, 15, 174; (d) S. Ito, K. Toyota, and M. Yoshifuji, Chem. Commun., 1997, 1637; (e) E. Niecke, M. Nieger, O. Schmidt, D. Gudat, and W. W. Schoeller, J. Am. Chem. Soc., 1999, 121, 519.

    Google Scholar 

  19. H. Ramdane, H. Ranaivonjatovo, J. Escudié, and N. Knouzi, Organometallics, 1996, 15, 2683.

    Google Scholar 

  20. H. Ramdane, H. Ranaivonjatovo, J. Escudié, S. Mathieu, and N. Knouzi, Organometallics, 1996, 15, 3070.

    Google Scholar 

  21. (a) M. Lazraq, C. Couret, J. Escudié, J. Satgé, and M. Soufiaoui, Polyhedron, 1991, 10, 1153; (b) G. Anselme, J. Escudié, C. Couret, and J. Satgé, J. Organomet. Chem., 1991, 403, 93.

    Google Scholar 

  22. (a) M. Rivière-Baudet, and A. Morère, J. Organomet. Chem., 1992, 431, 17; (b) M. Rivière-Baudet, A. Khallaayoun, and J. Satgé, Organometallics, 1993, 12, 1003; (c) M. Rivière-Baudet, A. Khallaayoun, and J. Satgé, J. Organomet. Chem., 1993, 462, 89; (d) M. Rivière-Baudet, and J. Satgé, J. Chem. Soc., Chem. Commun., 1995, 1687.

    Google Scholar 

  23. N. Wiberg and C. K. Kim, Chem. Ber., 1986, 119, 2966; 2980.

    Google Scholar 

  24. H. Ramdane, D. Sc. (Chem.) Thesis, University of El Jadida (Morocco), 1996, 210 pp. (in French).

  25. L. Rigon, H. Ranaivonjatovo, J. Escudié, A. Dubourg, and J. P. Declercq, Chem. Eur. J., 1999, 5, 774.

    Google Scholar 

  26. L. Rigon, D. Sc. (Chem.) Thesis, University P. Sabatier of Toulouse (France), 1999, 229 pp. (in French).

  27. (a) G. Miracle, J. L. Ball, D. R. Powell, and R. West, J. Am. Chem. Soc., 1993, 115, 11598; (b) C. Kerst, R. Ruffolo, and W. J. Leigh, Organometallics, 1997, 16, 5804; (c) C. Kerst, C. W. Rogers, R. Ruffolo, and W. J. Leigh, J. Am. Chem. Soc., 1997, 119, 466; (d) G. E. Miracle, J. L. Ball, S. R. Bielmeier, D. R. Powell, and R. West, in Progress in Organosilicon Chemistry, Eds B. Marciniec and J. Chojnowski, Gordon and Breach Science Publishers, Basel, 1995, p. 83; (e) M. Trommer, G. E. Miracle, B. E. Eichler, D. R. Powell, and R. West, Organometallics, 1997, 16, 5737; (f) B. E. Eichler, G. E. Miracle, D. R. Powell, and R. West, Main Group Met. Chem., 1999, 22, 147.

    Google Scholar 

  28. (a) B. E. Eichler, D. R. Powell, and R. West, Organometallics, 1998, 17, 2147; (b) N. Tokitoh, K. Kishikawa, and R. Okazaki, Chem. Lett., 1998, 811.

    Google Scholar 

  29. (a) M. Yoshifuji, K. Toyota, K. Shibayama, and N. Inamoto, Tetrahedron Lett., 1984, 25, 1809; (b) R. Appel, V. Winkhaus, and F. Knoch, Chem. Ber., 1986, 119, 2466; (c) M. Hafner, T. Wegemann, and M. Regitz, Synthesis, 1993, 1247; (d) M. Yoshifuji, S. Sasaki, and N. Inamoto, Tetrahedron Lett., 1989, 30, 839; (e) R. Appel, P. Fölling, B. Josten, M. Siray, V. Winkhaus, and F. Knoch, Angew. Chem., Int. Ed. Engl., 1984, 23, 619; (f) J.-C. Guillemin, T. Janati, J.-M. Denis, P. Guenot, and P. Savignac, Tetrahedron Lett., 1994, 35, 245; (g) G. Märkl and S. Reitinger, Tetrahedron Lett., 1988, 29, 463; (h) G. Märkl and U. Herold, Tetrahedron Lett., 1988, 29, 2935; (i) R. Appel, J. Kochta, and V. Winkhaus, Chem. Ber., 1988, 121, 631; (j) M. Yoshifuji, M. Shibata, K. Toyota, I. Miyahara, and K. Hirotsu, Heteroatom. Chem., 1994, 5, 195; (k) G. Märkl, P. Kreitmeier, H. Nöth, and K. Polborn, Angew. Chem., Int. Ed. Engl., 1990, 29, 927; (l) K. Toyota, K. Tashiro, M. Yoshifuji, I. Mihayara, A. Hayashi, and K. Hirotsu, J. Organomet. Chem., 1992, 431, C35; (m) G. Märkl and P. Kreitmeier, Tetrahedron Lett., 1989, 30, 3939; (n) S. J. Goede, L. De Vries, and F. Bickelhaupt, Bull. Soc. Chim. Fr., 1993, 130, 185; (o) N. Yamada, K. Abe, K. Toyota, and M. Yoshifuji, Org. Lett., 2002, 4, 569; (p) M. Chentit, H. Sidorenkova, J. Choua, M. Geoffroy, Y. Ellinger, and G. Bernardinelli, J. Organomet. Chem., 2001, 634, 136; (q) S. Ito, S. Kimura, and M. Yoshifuji, Org. Lett., 2003, 5, 1111.

    Google Scholar 

  30. (a) J. Grobe, D. Le Van, and T. Grosspietsch, Z. Naturforsch., 1991, 46b, 978; (b) O. I. Kolodiazhnyi, Tetrahedron Lett., 1982, 23, 4933; (c) O. I. Kolodiazhnyi, Zh. Obshch. Khim., 1982, 52, 2361; 1983, 53, 1226 [J. Gen. Chem. USSR, 1982, 52; 1983, 53 (Engl. Transl.)]; (d) O. I. Kolodiazhnyi, Phosphorus Sulfur, 1983, 18, 39; (e) T. Wegmann, M. Hafner, and M. Regitz, Chem. Ber., 1993, 126, 2525; (f) T. Niitsu, N. Inamoto, K. Toyota, and M. Yoshifuji, Bull. Chem. Soc. Jpn, 1990, 63, 2736; (g) R. Appel and C. Behnke, Z. anorg. allg. Chem., 1987, 555, 23; (h) C. Wentrup, H. Briehl, G. Becker, G. Uhl, H.-J. Wessely, A. Maquestiau, and R. Flammang, J. Am. Chem. Soc., 1983, 105, 7194.

    Google Scholar 

  31. (a) H. H. Karsch, F. H. Köhler, and H.-U. Reisacher, Tetrahedron Lett., 1984, 25, 3687; (b) M. Gouygou, M. Koenig, J. Escudié, and C. Couret, Heteroatom. Chem., 1991, 2, 221; (c) M. Yoshifuji, S. Sasaki, and N. Inamoto, J. Chem. Soc., Chem. Commun., 1989, 1732; (d) M. Yoshifuji, T. Niitsu, D. Shiomi, and N. Inamoto, Tetrahedron Lett., 1989, 30, 5433; (e) A. Alberti, M. Benaglia, M. A. Della Bona, M. Guerra, A. Hudson, and D. Macciantelli, Res. Chem. Intermed., 1996, 22, 381; (f) M. Chentit, H. Sidorenkova, A. Jouaiti, G. Terron, M. Geoffroy, and Y. Ellinger, J. Chem. Soc., Perkin Trans. 2, 1997, 921; (g) K. Toyota, A. Nakamura, and M. Yoshifuji, Chem. Commun., 2002, 3012.

    Google Scholar 

  32. (a) R. Appel and W. Paulen, Tetrahedron Lett., 1983, 24, 2639; (b) R. Appel and M. Siray, Angew. Chem., Int. Ed. Engl., 1983, 22, 785.

    Google Scholar 

  33. M. Ichinohe, T. Tanaka, and A. Sekiguchi, Chem. Lett., 2001, 1074.

  34. L. Tenud, M. Weilemann, and E. Dallwigk, Helv. Chim. Acta, 1977, 100, 975.

    Google Scholar 

  35. (a) M.-A. David, J. B. Alexander, D. S. Glueck, G. P. A. Yap, L. M. Liable-Sands, and A. L. Rheingold, Organometallics, 1997, 16, 378; (b) X.-G. Zhou, L.-B. Zhang, R.-F. Cai, Q.-J. Wu, L.-H. Weng, and Z.-E. Huang, J. Organomet. Chem., 2000, 604, 260.

    Google Scholar 

  36. R. Appel, P. Fölling, L. Krieger, M. Siray, and F. Knoch, Angew. Chem., Int. Ed. Engl., 1984, 23, 970.

    Google Scholar 

  37. (a) E. T. Seidl, R. S. Grev, and H. F. Schaefer, J. Am. Chem. Soc., 1992, 114, 3643; (b) F. Bernardi, A. Bottoni, M. Olivucci, M. A. Robb, and A. Venturini, J. Am. Chem. Soc., 1993, 115, 3322; (c) F. Bernardi, A. Bottoni, M. Olivucci, A. Venturini, and M. A. Robb, J. Chem. Soc., Faraday Trans., 1994, 90, 1617; (d) A. Venturini, F. Bernardi, M. Olivucci, M. A. Robb, and I. Rossi, J. Am. Chem. Soc., 1998, 120, 1912.

    Google Scholar 

  38. (a) P. R. Jones and M. E. Lee, J. Organomet. Chem., 1982, 232, 33; (b) G. Delpon-Lacaze, C. Couret, M. Veith, and V. Huch, Main Group Met. Chem., 1995, 18, 587.

    Google Scholar 

  39. Y. El Harouch, H. Gornitzka, H. Ranaivonjatovo, and J. Escudié, J. Organomet. Chem., 2002, 643–644, 202.

    Google Scholar 

  40. (a) D. J. Berger, P. P. Gaspar, P. Le Floch, F. Mathey, and R. S. Grev, Organometallics, 1996, 15, 4904; (b) D. J. Berger, P. P. Gaspar, R. S. Grev, and F. Mathey, Organometallics, 1994, 13, 640; (c) M. T. Nguyen, H. Vansweevelt, and L. G. Vanquickenborne, Chem. Ber., 1992, 125, 923; (d) M. T. Nguyen and A. F. Hegarty, J. Chem. Soc., Perkin. Trans. 2, 1985, 1999; (e) M. Chentit, H. Sidorenkova, M. Geoffroy, and Y. Ellinger, J. Phys. Chem. A, 1998, 102, 10469; (f) M. Yoshifuji, T. Niitsu, K. Toyota, N. Inamoto, K. Hirotsu, Y. Odagaki, T. Higuchi, and S. Nagase, Polyhedron, 1988, 7, 2213; (g) M. T. Nguyen and A. F. Hegarty, J. Chem. Soc., Perkin Trans. 2, 1985, 2005; (h) M. T. Nguyen, A. F. Hegarty, M. A. McGinn, and F. Ruelle, J. Chem. Soc., Perkin Trans. 2, 1985, 1991.

    Google Scholar 

  41. G. Trinquier and J.-P. Malrieu, J. Am. Chem. Soc., 1987, 109, 5303.

    Google Scholar 

  42. N. Sigal and Y. Apeloig, Organometallics, 2002, 21, 5486.

    Google Scholar 

  43. N. Takeda, H. Suzuki, N. Tokitoh, R. Okazaki, and S. Nagase, J. Am. Chem. Soc., 1997, 119, 1456.

    Google Scholar 

  44. N. Takeda, T. Kajiwara, and N. Tokitoh, Chem. Lett., 2001, 1076.

  45. (a) M. Weidenbruch, B. Brand-Roth, S. Pohl, and W. Saak, Angew. Chem., Int. Ed. Engl., 1990, 29, 90; (b) M. Weidenbruch, B. Brand-Roth, S. Pohl, and W. Saak, Polyhedron, 1991, 10, 1147.

    Google Scholar 

  46. G. Maier, H. P. Reisenauer, and H. Egenolf, Organometallics, 1999, 18, 2155.

    Google Scholar 

  47. H. Grützmacher, S. Freitag, R. Herbst-Irmer, and G. S. Sheldrick, Angew Chem., Int. Ed. Engl., 1992, 31, 437.

    Google Scholar 

  48. D. E. Goldberg, P. B. Hitchcock, M. F. Lappert, K. M. Thomas, A. J. Thorne, T. Fjeldberg, A. Haaland, and B. E. R. Schilling, J. Chem. Soc., Dalton Trans., 1986, 2387.

  49. G. Baba, C. G. Tea, S. A. Toure, M. Lesvier, and J. M. Denis, J. Organomet. Chem., 2002, 643–644, 342.

    Google Scholar 

  50. L. Weber, S. Kleinebekel, and P. Lonnecke, Z. anorg. allg. Chem., 2001, 627, 863.

    Google Scholar 

  51. L. Weber, G. Dembeck, R. Boese, and D. Blaeser, Organometallics, 1999, 18, 4603.

    Google Scholar 

  52. M. Bouslikhane, H. Gornitzka, J. Escudié, H. Ranaivonjatovo, and H. Ramdane, J. Am. Chem. Soc., 2000, 122, 12880.

    Google Scholar 

  53. M. Bouslikhane, H. Gornitzka, H. Ranaivonjatovo, and J. Escudié, Organometallics, 2002, 21, 1531.

    Google Scholar 

  54. J.-C. Guillemin, L. Lassalle, P. Drean, G. Wlodarczak, and J. Demaison, J. Am. Chem. Soc., 1994, 116, 8930.

    Google Scholar 

  55. M. Bouslikhane, D. Sc. (Chem.) Thesis, University P. Sabatier Toulouse (France), 2001, 209 pp. (in French).

  56. V. Winkhaus, D. Sc. (Chem.) Thesis, Bonn (Germany), 1987.

  57. H. Ranaivonjatovo, H. Ramdane, H. Gornitzka, J. Escudié, and J. Satgé, Organometallics, 1998, 17, 1631.

    Google Scholar 

  58. M. Yoshifuji, S. Sasaki, T. Niitsu, and N. Inamoto, Tetrahedron Lett., 1989, 30, 187.

    Google Scholar 

  59. (a) C. Jones, Coord. Chem. Rev., 2001, 215, 151; (b) N. Tokitoh, J. Organomet. Chem., 2000, 611, 217.

    Google Scholar 

  60. (a) C. Jones, J. W. Steed, and R. C. Thomas, J. Chem. Soc., Dalton Trans., 1999, 1541; (b) P. B. Hitchcock, C. Jones, and J. F. Nixon, Angew. Chem., Int. Ed. Engl., 1995, 34, 492; (c) A. Decken, C. J. Carmalt, J. A. C. Clyburne, and A. H. Cowley, Inorg. Chem., 1997, 36, 3741; (d) P. C. Andrews, C. L. Raston, B. W. Skelton, V. A. Tolhurst, and A. H. White, J. Chem. Soc., Chem. Commun., 1998, 575; (e) C. Jones, L. M. Engelhardt, P. C. Junk, D. S. Hutchings, W. C. Patalinghug, C. L. Raston, and A. H. White, J. Chem. Soc., Chem. Commun., 1991, 1560; (f) C. Jones, D. Sc. (Chem.) Thesis, Griffith University, 1992.

  61. N. Sigal and Y. Apeloig, J. Organomet. Chem., 2001, 636, 148.

    Google Scholar 

  62. N. Auner and M. Grasmann, J. Organomet. Chem., 2001, 621, 10.

    Google Scholar 

  63. (a) G. Märkl, H. Sejpka, S. Dietl, B. Nuber, and M. L. Ziegler, Angew. Chem., Int. Ed. Engl., 1986, 25, 1003; (b) G. Märkl, S. Pflaum, and A. Maack, Tetrahedron Lett., 1992, 33, 1981; (c) G. Märkl and U. Herold, Tetrahedron Lett., 1988, 29, 2935; (d) M. Yoshifuji, K. Toyota, H. Yoshimura, K. Hirotsu, and A. Okamoto, J. Chem. Soc., Chem. Commun., 1991, 124; (e) G. Märkl and W. Bauer, Angew. Chem., Int. Ed. Engl., 1989, 28, 1695; (f) G. Märkl, P. Kreitmeier, and R. Daffner, Tetrahedron Lett., 1993, 34, 7045.

    Google Scholar 

  64. (a) G. Märkl and P. Kreitmeier, Angew. Chem., Int. Ed. Engl., 1988, 27, 1360; (b) M. Yoshifuji, K. Toyota, and H. Yoshimura, Chem. Lett., 1991, 491.

    Google Scholar 

  65. S. Ishida, T. Inamoto, C. Kabuto, and M. Kira, Nature, 2003, 421, 725.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Escudié, J., Ranaivonjatovo, H., Bouslikhane, M. et al. Phosphasila-, phosphagerma-, and phosphaarsaallenes --P=C=E (E = Si, Ge, As) and arsa- and diarsaallenes --As=C=E" (E" = C, As). Russian Chemical Bulletin 53, 1020–1033 (2004). https://doi.org/10.1023/B:RUCB.0000041301.62839.ba

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:RUCB.0000041301.62839.ba

Navigation