Skip to main content
Log in

Divalent silicon, germanium, and tin compounds with element--heteroatom bonds

  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Principal results and trends in chemistry of organic derivatives of divalent silicon, germanium, and tin containing bonds between these elements and the halogen, nitrogen, oxygen, and sulfur atoms are briefly surveyed. Selected characteristics of compounds with the element--phosphorus and element--arsenic bonds are discussed for comparison. Data on the synthesis and structures of new types of these compounds, viz., germanium(ii) diacylates, the alkoxy derivatives E14(OR)2 and E14(OR)Y (E14 = Ge, Sn; R = Me2NCH2CH2; Y = Cl, AcO, (Me3Si)2N), and the ate-complexes Li(+)[E14(OCH2CH2NMe2)3](–) and [Li(thf)2](+)[TsiE14(SBu)2](–) (E14 = Ge, Sn; Tsi = (Me3Si)3C), are presented. It was established for the first time that germanium(ii) and tin(ii) derivatives can be stabilized in the monomeric form only through the intramolecular Nsp3→E14 coordination bonds and the σ-acceptor effect of the oxygen atoms without introduction of bulky substituents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. E. Boganov, M. P. Egorov, V. I. Faustov, and O. M. Nefedov, in The Chemistry of Organic Germanium, Tin and Lead Compounds, Ed. Z. Rappoport, Wiley, Chichester (UK), 2002.

    Google Scholar 

  2. M. P. Egorov and O. M. Nefedov, Main Group Met. Chem., 1996, 19, 367.

    Google Scholar 

  3. M. Haaf, T. A. Schmetdake, and R. West, Acc. Chem. Res., 2000, 33, 704.

    Google Scholar 

  4. B. Gehrhus and M. Lappert, J. Organomet. Chem., 2001, 617-618, 209.

    Google Scholar 

  5. N. Tokitoh and R. Okazaki, Coord. Chem. Rev., 2000, 210, 251.

    Google Scholar 

  6. M. Driess and H. Grützmacher, Angew. Chem., Int. Ed. Engl., 1996, 35, 828.

    Google Scholar 

  7. P. P. Gaspar and R. West, in Chemistry of Organosilicon Compounds, Eds Z. Rappoport and Y. Apeloig, Wiley, New York, 1998, 2, Pt. 3, p. 2463.

    Google Scholar 

  8. J. Barrau and G. Rima, Coord. Chem. Rev., 1998, 178–180, 593.

    Google Scholar 

  9. P. P. Power, J. Chem. Soc., Dalton Trans., 1998, 2939.

  10. M. Weidenbruch, Eur. J. Inorg. Chem., 1999, 373.

  11. N. N. Zemlyansky, I. V. Borisova, Yu. A. Ustynyuk, M. S. Nechaev, V. V. Lunin, V. N. Khrustalev, and M. Yu. Antipin, VII Conf. on the Chemistry of Carbenes and Related Intermediates. Book of Abstrs, Kazan (Russia), 2003, p. 28.

  12. V. N. Khrustalev, M. Yu. Antipin, N. N. Zemlyansky, I. V. Borisova, Yu. A. Ustynyuk, and V. V. Lunin, VII Conf. on the Chemistry of Carbenes and Related Intermediates. Book of Abstrs, Kazan (Russia), 2003, p. 43.

  13. M. S. Nechaev, A. V. Gavrikov, and Yu. A. Ustynyuk, VII Conf. on the Chemistry of Carbenes and Related Intermediates. Book of Abstrs, Kazan (Russia), 2003, p. 45.

  14. M. S. Nechaev and Yu. A. Ustynyuk, VII Conf. on the Chemistry of Carbenes and Related Intermediates. Book of Abstrs, Kazan (Russia), 2003, p. 78.

  15. E. A. Chernyshev, N. A. Komalenkova, and O. A. Bashkirova, Usp. Khim., 1976, 45, 1782 [Russ. Chem. Rev., 1976, 45, 913 (Engl. Transl.)].

    Google Scholar 

  16. F. Huppmann, W. Marihggele, T. Kottke, and A. Meller, J. Organomet. Chem., 1992, 434, 35.

    Google Scholar 

  17. F. Huppmann, M. Noltemeyer, and A. Meller, J. Organomet. Chem., 1994, 483, 217.

    Google Scholar 

  18. D. R. Weyenberg and W. H. Atwell, Pure Appl. Chem., 1969, 19, 343.

    Google Scholar 

  19. G. Maier, H. P. Reisenauer, K. Schottler, and U. WessolekKraus, J. Organomet. Chem., 1989, 366, 25.

    Google Scholar 

  20. V. N. Khabashesku, K. N. Kudin, J. L. Margrave, and L. Fredin, J. Organomet. Chem., 2000, 595, 248.

    Google Scholar 

  21. S. Tsutsui, K. Sakamoto, and M. Kira, J. Am. Chem. Soc., 1998, 120, 9955.

    Google Scholar 

  22. V. I. Shiryaev and V. F. Mironov, Usp. Khim., 1983, 52, 321 [Russ. Chem. Rev., 1983, 52, 184 (Engl. Transl.)].

    Google Scholar 

  23. P. Foley and P. Zeldin, Inorg. Chem., 1975, 14, 2264.

    Google Scholar 

  24. P. J. Corvan and J. J. Zuckerman, Inorg. Chim. Acta, 1979, 34, L255.

    Google Scholar 

  25. M. M. Olmstead and P. P. Power, Inorg. Chem., 1984, 23, 413.

    Google Scholar 

  26. (a) V. N. Khrustalev, I. V. Borisova, N. N. Zemlyanskii, Yu. A. Ustynyuk, and M. Yu. Antipin, Kristallografiya, 2002, 47, 672 [Crystallogr. Rept., 2002 (Engl. Transl.)]; (b) N. N. Zemlyansky, I. V. Borisova, V. N. Khrustalev, M. Yu. Antipin, Yu. A. Ustynyuk, M. S. Nechaev, and V. V. Lunin, Organometallics, 2003, 22, 5441.

    Google Scholar 

  27. H. Lavayssiere, G. Dousse, and J. Satge, Phosphorus, Sulfur, Silicon and Relat. Elem., 1990, 53, 411.

    Google Scholar 

  28. H. Lavayssiere, G. Dousse, S. Mazieres, and J. Satge, Phosphorus, Sulfur, Silicon and Relat. Elem., 1991, 61, 341.

    Google Scholar 

  29. S. Mazieres, H. Lavayssiere, G. Dousse, and J. Satge, Inorg. Chim. Acta, 1996, 252, 25.

    Google Scholar 

  30. P. Jutzi and W. Stener, Chem. Ber., 1976, 109, 1575.

    Google Scholar 

  31. N. N. Zemlyanskii, I. V. Borisova, M. G. Kuznetsova, V. N. Khrustalev, M. Yu. Antipin, Yu. A. Ustynyuk, V. V. Lunin, C. Eaborn, M. S. Hill, and J. D. Smith, Zh. Org. Khim., 2003, 39, 527 [Russ. J. Org. Chem., 2003, 39, 491 (Engl. Transl.)].

    Google Scholar 

  32. P. A. W. Dean, J. J. Vittal, and N. C. Payne, Can. J. Chem., 1985, 63, 394.

    Google Scholar 

  33. C. D. Schaeffer and J. J. Zuckermann, J. Am. Chem. Soc., 1974, 96, 7160.

    Google Scholar 

  34. A. Meller and C.-P. Grabe, Chem. Ber., 1985, 118, 2020.

    Google Scholar 

  35. D. H. Harris and M. F. Lappert, Chem. Commun., 1974, 815.

  36. M. F. Lappert and P. P. Power, Adv. Chem. Ser., 1976, 157, 70.

    Google Scholar 

  37. M. J. S. Gynane, D. H. Harris, M. F. Lappert, P. P. Power, P. Riviére, and M. Riviére-Baudet, J. Chem. Soc., Dalton Trans., 1977, 2004.

  38. T. Fjeldberg, H. Hope, M. F. Lappert, P. P. Power, and A. J. Thorne, J. Chem. Soc., Chem. Commun., 1983, 639.

  39. B. Çetinskaya, I. Gümrükçü, M. F. Lappert, J. L. Atwood, R. D. Rogers, and M. J. Zaworotko, J. Am. Chem. Soc., 1980, 102, 2088.

    Google Scholar 

  40. T. Fjeldberg, P. B. Hitchcock, M. F. Lappert, S. J. Smith, and A. J. Thorne, Chem. Commun., 1985, 939.

  41. H. Braunschweig, R. W. Chorley, P. B. Hitchcock, and M. F. Lappert, Chem. Commun., 1992, 1311.

  42. P. B. Hitchcock, M. F. Lappert, B. J. Samways, and E. L. Weinberg, J. Chem. Soc., Chem. Commun., 1983, 1492.

  43. M. Driess, R. Janoschek, H. Pritzkow, S. Rell, and U. Winkler, Angew. Chem., Int. Ed. Engl., 1995, 34, 1614.

    Google Scholar 

  44. J. Satge and G. Dousse, J. Organomet. Chem., 1973, 61, C26.

    Google Scholar 

  45. J. D. Andriamazaka, C. Couret, J. Escudie, and J. Satge, Posphorus and Sulfur, 1982, 12, 265.

    Google Scholar 

  46. H. Lavayssiere, G. Dousse, and J. Satge, Rec. Trav. Chim., 1988, 107, 440.

    Google Scholar 

  47. M. Veith, E. Werle, R. Lisowsky, R. Kőppe, and H. Schnőckel, Chem. Ber., 1992, 125, 1375.

    Google Scholar 

  48. M. Veith, Angew. Chem., 1987, 99, 1 [Angew. Chem., Int. Ed. Engl., 1987, 26, 1].

    Google Scholar 

  49. R. West and M. Denk, Pure Appl. Chem., 1996, 68, 785.

    Google Scholar 

  50. W. Sander, A. Patyk, and G. Bucher, J. Mol. Struct., 1990, 222, 21.

    Google Scholar 

  51. W. A. Hermann, M. Denk, J. Behm, W. Scherer, F.-R. Klingan, H. Bock, B. Solouki, and M. Wagner, Angew. Chem., 1992, 104, 1489 [Angew. Chem., Int. Ed. Engl., 1992, 31, 1485].

    Google Scholar 

  52. H. Braunschweig, B. Gehrhus, P. B. Hitchcock, and M. F. Lappert, Z. anorg. allgem. Chem., 1995, 621, 1922.

    Google Scholar 

  53. S. Veprek, J. Prokop, F. Glatz, R. Merica, F. R. Klingan, and W. A. Hermann, Chem. Mater., 1996, 8, 825.

    Google Scholar 

  54. M. V. Andreocci, C. Cauletti, S. Stranges, B. Wrackmeyer, and C. Stader, Z. Naturforsch., B, 1991, 46, 39.

    Google Scholar 

  55. N. Gans-Eischler, D. Guetat, and M. Nieger, Angew. Chem., Int. Ed. Engl., 2002, 41, 1888.

    Google Scholar 

  56. D. F. Moser, T. Bosse, J. Olson, J. L. Moser, I. A. Gusei, and R. West, J. Am. Chem. Soc., 2002, 124, 4186.

    Google Scholar 

  57. M. Denk, R. K. Hayashi, and R. West, J. Am. Chem. Soc., 1994, 116, 10813.

    Google Scholar 

  58. B. Gehrhus, J. Heinicke, and S. Meinel, Main Group Met. Chem., 1999, 21, 99.

    Google Scholar 

  59. P. Jutzi, Angew. Chem., Int. Ed. Engl., 2000, 39, 3797.

    Google Scholar 

  60. C. Bibal, S. Mazieres, H. Gornitzka, and C. Couret, Angew. Chem., Int. Ed. Engl., 2001, 40, 952.

    Google Scholar 

  61. D. Danovich, F. Ogliaro, M. Karni, Y. Apeloig, D. L. Cooper, and S. Shaik, Angew. Chem., Int. Ed. Engl., 2001, 40, 4023.

    Google Scholar 

  62. M. Weidenbruch, Angew. Chem., Int. Ed. Engl., 2003, 42, 2222.

    Google Scholar 

  63. M. E. Lee, H. M. Cho, M. S. Ryu, C. H. Kim, and W. Ando, J. Am. Chem. Soc., 2001, 123, 7732.

    Google Scholar 

  64. M. Flock and A. Dransfeld, Chem. Eur. J., 2003, 9, 3320

    Google Scholar 

  65. M. Massol, J. Satgè, and P. Riviére, J. Organomet. Chem., 1970, 22, 599.

    Google Scholar 

  66. P. Rivière, M. Riviére-Baudet, and J. Satgè, in Comprehensive Organomet. Chem., Pergamon Press, 1982, 2, 478.

    Google Scholar 

  67. P. Rivière, M. Riviére-Baudet, and J. Satgè, in Comprehensive Organomet. Chem., Pergamon Press, Oxford, 1995, 2, 190.

    Google Scholar 

  68. P. Jutzi and C. Leue, Organometallics, 1994, 13, 2898.

    Google Scholar 

  69. T. Ohtaki and W. Ando, Organometallics, 1996, 15, 3104.

    Google Scholar 

  70. T. Ohtaki, N. Fukaya, and W. Ando, Organometallics, 1997, 16, 4956.

    Google Scholar 

  71. M. P. Egorov, O. M. Nefedov, T. Lin, and P. P. Gaspar, Organometallics, 1995, 14, 1539.

    Google Scholar 

  72. V. D. Pomeshchikov and V. A. Pozdeev, Kinet. Katal., 1973, 14, 1532 [Kinet. Catal., 1973, 14 (Engl. Transl.)].

    Google Scholar 

  73. G. Fritz and H. Scheer, Z. Naturforsch. B, 1964, 19, 537.

    Google Scholar 

  74. G. Fritz and H. Scheer, Z. anorg. allgem. Chem., 1965, 338, 1.

    Google Scholar 

  75. T. D. Smith, Nature, 1963, 199, 374.

    Google Scholar 

  76. C. Eaborn, P. B. Hitchcock, J. D. Smith, and S. E. Sözerli, Organometallics, 1997, 16, 5653.

    Google Scholar 

  77. R. Corriu, G. Lanneau, C. Priou, F. Soulairol, N. Auner, R. Probst, R. Conlin, and C. Tan, J. Organomet. Chem., 1994, 466, 55.

    Google Scholar 

  78. K. Tamao and K. Nagata, J. Am. Chem. Soc., 1995, 117, 11592.

    Google Scholar 

  79. K. Tamao, M. Asahara, and A. Toshimitsu, Chem. Lett., 2000, 658.

  80. K. Tamao, M. Asahara, T. Saeki, S. Feng, A. Kawachi, and A. Toshimitsu, Chem. Lett., 2000, 660.

  81. A. Toshimitsu, T. Saeki, and K. Tamao, J. Am. Chem. Soc., 2001, 123, 9210.

    Google Scholar 

  82. K. Tamao, M. Asahara, T. Saeki, and A. Toshimitsu, J. Organomet. Chem., 2000, 600, 118.

    Google Scholar 

  83. A. Akkari-El Ahbad, G. Rima, H. Gornitzka, and J. Barrau, J. Organomet. Chem., 2002, 658, 94.

    Google Scholar 

  84. M. P. Bigwood, P. J. Corvan, and J. J. Zuckerman, J. Am. Chem Soc., 1981, 103, 7643.

    Google Scholar 

  85. C. Drost, P. B. Hitchcock, M. F. Lappert, and L. J.-M. Pierssens, Chem. Commun. 1997, 1141.

  86. J. T. B. H. Jastrzebski, P. A. van der Schaaf, G. Boersma, G. van Koten, D. Heijdenrijk, K. Goubitz, and D. J. A. de Ridder, J. Organomet. Chem., 1989, 367, 55.

    Google Scholar 

  87. J. T. B. H. Jastrzebski, P. A. van der Schaaf, J. Boersma, G. van Koten, M. C. Zoutberg, and D. Heljdenrijk, Organometallics, 1989, 8, 1373.

    Google Scholar 

  88. K. Angermund, K. Jonas, C. Krűger, J. L. Latten, and Y.-H. Tsay, J. Organomet. Chem., 1988, 353, 17.

    Google Scholar 

  89. H. Schmidt, S. Keitemeyer, B. Neumann, H.-F. Stammler, W. W. Schnoeller, and P. Jutzi, Organometallics, 1998, 17, 2149.

    Google Scholar 

  90. P. Jutzi, S. Keitemeyer, B. Neumann, and H.-G. Stammler, Organometallics, 1999, 18, 4778.

    Google Scholar 

  91. W.-P. Leung, W.-H. Kwok, L.-H. Weng, L. T. C. Law, Z. Y. Zhou, and T. C. W. Mak, J. Chem. Soc., Dalton Trans., 1997, 4301.

  92. G. Ossig, A. Melier, C. Brönneke, O. Muller, M. Schäfer, and R. Herbst-Irmer, Organometallics, 1997, 16, 2116.

    Google Scholar 

  93. L. M. Engelhardt, B. S. Jolly, M. F. Lappert, C. L. Raston, and A. H. White, J. Chem. Soc., Chem. Commun., 1988, 336.

  94. C. J. Cardin, D. J. Cardin, S. P. Constantine, M. G. B. Drew, H. Rashid, M. A. Convery, and D. Fenske, J. Chem. Soc., Dalton Trans., 1998, 2749.

  95. S. Benet, C. J. Cardin, T. J. Cardin, S. P. Constantine, P. Heath, H. Rashid, S. Teixeira, J. H. Thorpe, and A. K. Todd, Organometallics, 1999, 18, 389.

    Google Scholar 

  96. B. S. Jolly, M. F. Lappert, L. M. Engelhardt, A. H. White, and C. L. Raston, J. Chem. Soc., Dalton Trans., 1993, 2653.

  97. S. S. Al-Juaid, A. G. Avent, C. Eaborn, M. S. Hill, P. B. Hitchcock, D. J. Patel, and J. D. Smith, Organometallics, 2001, 20, 1223.

    Google Scholar 

  98. R. Gillespie, Molecular Geometry, Van Nostrand Reinhold, London, 1972, 226 pp.

    Google Scholar 

  99. C. J. Cardin, D. J. Cardin, S. P. Constantine, A. K. Todd, S. J. Teat, and S. Coles, Organometallics, 1998, 17, 2144.

    Google Scholar 

  100. P. Jutzi, S. Keitemeyer, B. Neumann, A. Stammler, and H.-G. Stammler, Organometallics, 2001, 20, 42.

    Google Scholar 

  101. M. Mehring, C. Loew, M. Schuermann, F. Uhlig, K. Jurkschat, and B. Mahieu, Organometallics, 2000, 19, 4613.

    Google Scholar 

  102. L. D. Silverman and M. Zeldin, Inorg. Chem., 1980, 19, 272.

    Google Scholar 

  103. J. Barrau, G. Rima, and T. El Amraoui, Organometallics, 1998, 17, 607.

    Google Scholar 

  104. M. Veith, S. Becker, and U. Huch, Angew. Chem., Int. Ed. Engl., 1989, 28, 1237.

    Google Scholar 

  105. C. Kitamura, A. Yoneda, K.-I. Sugiura, and Y. Sakata, Acta Crystallogr., Sect. C (Cryst. Struct. Commun.), 1999, 55, 876.

    Google Scholar 

  106. C. Kitamura, N. Maeda, N. Kamada, M. Ouchi, and A. Yoneda, J. Chem. Soc., Perkin Trans. 1, 2000, 781.

  107. M. C. Kuchta, J. M. Hahn, and G. Parkin, J. Chem. Soc., Dalton Trans., 1999, 3559.

  108. D. A. Atwood, J. A. Jegier, K. J. Martin, and D. Rutherford, J. Organomet. Chem., 1995, 503, C4.

    Google Scholar 

  109. S. R. Foley, C. Bensimon, and D. S. Richeson, J. Am. Chem. Soc., 1997, 119, 10359.

    Google Scholar 

  110. S. R. Foley, Y. Zhou, G. P. A. Yap, and D. S. Recherson, Inorg. Chem., 2000, 39, 924.

    Google Scholar 

  111. S. R. Foley, G. P. A. Yap, and D. S. Recherson, Organometallics, 1999, 18, 4700.

    Google Scholar 

  112. Y. Zhou and D. S. Recherson, J. Am. Chem. Soc., 1996, 118, 10850.

    Google Scholar 

  113. H. H. Karsch, P. A. Schlüter, and M. Reisky, Eur. J. Inorg. Chem., 1998, 433.

  114. A. Akkari, J. J. Byrne, I. Saur, G. Rima, H. Gornitzka, and J. Barrau, J. Organomet. Chem., 2001, 622, 190.

    Google Scholar 

  115. Y. Ding, H. W. Roesky, M. Noltemeyer, H.-G. Schmidt, and P. P. Power, Organometallics, 2001, 20, 1190.

    Google Scholar 

  116. L. W. Pineda, V. Jancik, H. W. Roesky, D. Neculai, and A. M. Neculai, Angew. Chem., Int. Ed. Engl., 2004, 43, 1419.

    Google Scholar 

  117. H. V. R. Dias and Z. Wang, J. Am. Chem. Soc., 1997, 119, 4650.

    Google Scholar 

  118. A. C. Fillipou, P. Portius, and G. Kocior-Kőhn, Chem. Commun., 1998, 2327.

  119. A. H. Cowley, R. L. Geerts, C. M. Numm, and C. J. Carrano, J. Organomet. Chem., 1988, 341, C27.

    Google Scholar 

  120. D. L. Reger, S. J. Knox, M. F. Huff, and A. L. Rheingold, Inorg. Chem., 1991, 30, 1754.

    Google Scholar 

  121. H. Braunschweig, C. Drost, P. B. Hitchcock, M. F. Lappert, and L. J.-M. Pierssens, Angew. Chem., Int. Ed. Engl., 1997, 36, 261.

    Google Scholar 

  122. M. Weidenbruch, U. Grobecker, W. Saak, E.-M. Peters, and K. Peters, Organometallics, 1998, 17, 5206.

    Google Scholar 

  123. H. H. Karsch, Izv. Akad. Nauk, Ser. Khim., 1993, 2025 [Russ. Chem. Bull., 1993, 42, 1937 (Engl. Transl.)].

  124. H. H. Karsch and E. Witt, in Organosilicon Chemistry III. From Molecules to Materials, Eds N. Auner and J. Weis, Wiley VCH, Weinheim (Germany), 1998.

    Google Scholar 

  125. M. Veith, S. Becker, and V. Huch, Angew. Chem., Int. Ed. Engl., 1990, 29, 216.

    Google Scholar 

  126. J. Barrau, G. Rima, and T. El Amraoui, J. Organomet. Chem., 1998, 570, 163.

    Google Scholar 

  127. M. Veith and A. Rammo, Z. anorg. allgem. Chem., 1997, 623, 861.

    Google Scholar 

  128. M. Veith, S. Becker, and U. Huch, Angew. Chem., 1989, 101, 1287 [Angew. Chem., Int. Ed. Engl., 1989, 28, 1237].

    Google Scholar 

  129. S. R. Foley, C. Bensimon, and D. S. Richeson, J. Am. Chem. Soc., 1997, 119, 10359.

    Google Scholar 

  130. J. Barrau, G. Rima, and T. El Amraoui, J. Organomet. Chem., 1998, 570, 163.

    Google Scholar 

  131. M. Veith and A. Detemple, Phosphorus, Sulfur Silicon Relat. Elem., 1992, 65, 17.

    Google Scholar 

  132. M. C. Kuchta and G. Parkin, J. Chem. Soc., Chem. Commun., 1994, 1351.

  133. N. N. Zemlyansky, I. V. Borisova, M. G. Kuznetsova, V. N. Khrustalev, Yu. A. Ustynyuk, M. S. Nechaev, V. V. Lunin, J. Barrau, and G. Rima, Organometallics, 2003, 22, 1675.

    Google Scholar 

  134. Cambridge Crystal Structure Database, Cambridge, Release 2000.

  135. C. Drost, P. B. Hitchcock, and M. F. Lappert, Organometallics, 1998, 17, 3838.

    Google Scholar 

  136. H.-P. Abicht, K. Jurkschat, A. Tzschach, K. Peters, E.-M. Peters, and H. G. von Schnering, J. Organomet. Chem., 1987, 326, 357.

    Google Scholar 

  137. J. T. B. H. Jastrzebski, H. A. J. Sypkens, F. J. A. des Tombe, P. A. van der Schaaf, J. Boersma, G. van Koten, A. L. Spek, and A. J. M. Duisenberg, J. Organomet. Chem., 1990, 396, 25.

    Google Scholar 

  138. D. N. Laikov, Chem. Phys. Lett., 1997, 281, 151.

    Google Scholar 

  139. D. N. Laikov, Ph. D. (Phys.-Mat.) Thesis, M. V. Lomonosov Moscow State University, Moscow, 2000 (in Russian).

    Google Scholar 

  140. G. Wittig, G. Keicher, A. Rückert, and P. Raff, Liebigs Ann. Chem., 1949, 563, 110.

    Google Scholar 

  141. G. Wittig and A. Rückert, Liebigs Ann. Chem., 1950, 566, 101.

    Google Scholar 

  142. G. Wittig and H. Schloeder, Liebigs Ann. Chem., 1955, 592, 38.

    Google Scholar 

  143. G. Wittig and D. Wittenberg, Liebigs Ann. Chem., 1957, 606, 1.

    Google Scholar 

  144. G. Wittig, H. G. Reppe, and T. Eicher, Liebigs Ann. Chem., 1961, 643, 47.

    Google Scholar 

  145. G. Wittig, Angew. Chem., 1958, 70, 65.

    Google Scholar 

  146. B. Achmatowicz, E. Baranowska, A. R. Daniewski, J. Pankowski, and J. Wicha, Tetrahedron Lett., 1985, 26, 5597.

    Google Scholar 

  147. M. J. Eis, J. E. Wrobel, and B. Ganem, J. Am. Chem. Soc., 1984, 106, 3693.

    Google Scholar 

  148. D. C. Bradley, Chem. Rev., 1989, 89, 1317.

    Google Scholar 

  149. L. H. Gade, Eur. J. Inorg. Chem., 2002, 1257.

  150. L. H. Gade, Acc. Chem. Res., 2002, 35, 575.

    Google Scholar 

  151. H, J. Reich, M. J. Bevan, B. Ö. Gudmundson, and C. L. Puckett, Angew. Chem., Int. Ed. Engl., 2002, 41, 3436.

    Google Scholar 

  152. M. Veith, K. Weidner, K. Kunze, D. Käfer, J. Hans, and V. Huch, Coord. Chem. Rev., 1994, 137, 297.

    Google Scholar 

  153. V. B. Kersting and B. Krebs, Inorg. Chem., 1994, 33, 3886.

    Google Scholar 

  154. V. N. Khrustalev, M. Yu. Antipin, N. N. Zemlyansky, I. V. Borisova, Yu. A. Ustynyuk, V. V. Lunin, J. Barrau, and G. Rima, J. Organomet. Chem., 2004, 689, 478.

    Google Scholar 

  155. M. Veith and R. Rosler, Z. Naturforsch., B, 1986, 41, 1071.

    Google Scholar 

  156. D. J. Teff, J. C. Huffman, and K. G. Caulton, Inorg. Chem., 1997, 36, 4372.

    Google Scholar 

  157. M. Veith, J. Hans, L. Stahl, P. May, V. Huch, and A. Sebald, Z. Naturforsch., B, 1991, 46, 403.

    Google Scholar 

  158. I. V. Borisova, C. Eaborn, M. S. Hill, V. N. Khrustalev, M. G. Kuznetsova, J. D. Smith, Yu. A. Ustynyuk, V. V. Lunin, and N. N. Zemlyansky, Organometallics, 2002, 21, 4005.

    Google Scholar 

  159. C. Eaborn, P. B. Hitchcock, J. D. Smith, and A. C. Sullivan, J. Chem. Soc., Chem. Commun., 1983, 827.

  160. V. Bazant, J. Chvalovsky, and J. Rathousky, Organosilicon Compounds, Published House Czechoslovak Academy of Sciences, Prague, 1965, 1, 2, Nos. 1 and 2.

    Google Scholar 

  161. Yu. L. Slovokhotov, T. V. Timofeeva, M. Yu. Antipin, and Yu. T. Struchkov, J. Mol. Struct., 1984, 112, 127.

    Google Scholar 

  162. G. D. Smith, P. F. Fanwick, and I. P. Rothwell, Inorg. Chem., 1989, 618.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zemlyanskii, N.N., Borisova, I.V., Nechaev, M.S. et al. Divalent silicon, germanium, and tin compounds with element--heteroatom bonds. Russian Chemical Bulletin 53, 980–1006 (2004). https://doi.org/10.1023/B:RUCB.0000041299.11084.26

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:RUCB.0000041299.11084.26

Navigation