Skip to main content
Log in

Selective oxidation of CO in excess hydrogen on copper—cerium-containing catalysts

  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Selective oxidation of CO that is in mixtures enriched in H2 was studied to investigate catalytic properties of the 0.5—80% CuO/Ce0.7Zr0.3O2 system. The catalysts were prepared by the combined decomposition of copper, cerium, and zirconyl nitrates at 300 °C. The systems studied are active and stable under mild conditions of the process (80—160 °C) and at high space velocities (to 100000 h–1) of the reaction mixture (2% CO, 1% O2, 40—50% H2). With an increase in the CuO content in the catalysts up to 20%, the degree of CO removal achieves 60% (120 °C and V = 35000 h–1) and further does not change appreciably. The contribution of oxygen participation into CO oxidation is virtually independent of the copper concentration in the sample and ranges from 65 to 75%. The dependences of the Arrhenius equation parameters for CO and H2 oxidation on the catalyst composition were determined, which makes it possible to calculate the conversion of reactants and selectivity of CO conversion under the specified conditions of the process. The addition of CO2 and H2O (12—15%) to the reaction mixture decreases the catalyst activity and simultaneously increases the selectivity of CO oxidation to 100%. It is shown by the TPR and X-ray diffraction methods that the combined decomposition of the starting Cu2+, Ce3+, and ZrO2+ nitrates produces solid solutions of oxides with a high content of CuO. The reductive pre-treatment of fresh samples of the studied catalysts results in the destruction of the solid solution and formation of highly dispersed Cu particles on the surface of Ce—Zr—O. These particles are active in CO oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. A. Lemons, J. Power Sources, 1990, 29, 251.

    Google Scholar 

  2. B. Lindstrom, L. J. Pettersson, and P. G. Menon, Appl. Catal. A: Gen., 2002, 234, 111.

    Google Scholar 

  3. S. Gottesfeld and J. Pafford, J. Electrochem. Soc., 1988, 135, 2651.

    Google Scholar 

  4. R. Kumar and S. Ahmed, Fuels Processing for Transportation Fuel Cell Systems, Presented at the First International Sympo-sium on New Materials for Fuel Cell Systems, Montreal, Canada, July 1995, 224.

  5. S. H. Oh and R. M. Sinkevitch, J. Catal., 1993, 142, 254.

    Google Scholar 

  6. H. Igarashi, H. Uchida, M. Suzuki, Y. Sasaki, and M. Watanabe, Appl. Catal. A: Gen., 1997, 159, 159.

    Google Scholar 

  7. P. V. Snytnikov, V. A. Sobyanin, V. D. Belyaev, P. G. Tsyrulnikov, N. B. Shitova, and D. A. Shlyapin, Appl. Catal. A: Gen., 2003, 239, 149.

    Google Scholar 

  8. G. K. Bethke and H. H. Kung, Appl. Catal. A: Gen., 2000, 194–195, 43.

    Google Scholar 

  9. M. M. Schubert, V. Plzak, J. Garche, and R. J. Behm, Catal. Lett., 2001, 76, 143.

    Google Scholar 

  10. G. Avgouropoulos, T. Ioannides, H. K. Matralis, J. Batista, and S. Hocevar, Catal. Lett., 2001, 73, 33.

    Google Scholar 

  11. J. B. Wang, S.-C. Lin, and T.-J. Huang, Appl. Catal. A: Gen., 2002, 232, 107.

    Google Scholar 

  12. A. Martínez-Arias, J. Soria, R. Cataluña, and J. C. Conesa, V. Cortés Corberán, Stud. Surf. Sci. Catal., 1998, 116, 591.

    Google Scholar 

  13. A. Martínez-Arias, M. Fernández-García, J. Soria, and J. C. Conesa, J. Catal., 1999, 182, 367.

    Google Scholar 

  14. P. W. Park and J. S. Ledford, Catal. Lett., 1998, 50, 41.

    Google Scholar 

  15. P. Fornasiero, G. Balducci, R. D. Monte, J. Kašpar, V. Sergo, G. Gubitosa, A. Ferrero, and M. Graziani, J. Catal., 1996, 164, 173.

    Google Scholar 

  16. T. Nakatani and H. Okamoto, J. Sol-Gel Sci. Technol., 2003, 26, 859.

    Google Scholar 

  17. J. A. Wang, M. A. Valenzuela, S. Castillo, J. Salmones, and M. Moran-Pineda, J. Sol-Gel Sci. Technol., 2003, 26, 879.

    Google Scholar 

  18. F. Izumi and T. Ikeda, Mater. Sci. Forum, 2000, 198, 321.

    Google Scholar 

  19. W.-P. Dow and T.-J. Huang, J. Catal., 1996, 160, 171.

    Google Scholar 

  20. M. F. Luo, Y.-J. Zhong, X.-X. Yuan, and X.-M. Zheng, Appl. Catal. A: Gen., 1997, 162, 121.

    Google Scholar 

  21. X. Jiang, G. Lu, R. Zhou, J. Mao, Y. Chen, and X. Zheng, Appl. Surf. Sci., 2001, 173, 208.

    Google Scholar 

  22. W. Liu, A. F. Sarofim, and M. Flytzani-Stephanopoulos, Chem. Eng. Sci., 1994, 49, 4871.

    Google Scholar 

  23. K. I. Choi and M. A. Vannice, J. Catal., 1991, 131, 22.

    Google Scholar 

  24. Y. Liu, T. Hayakawa, K. Suzuki, S. Hamakawa, T. Tsunoda, T. Ishii, and M. Kumagai, Appl. Catal. A: Gen.,2002, 223, 137.

    Google Scholar 

  25. Lj. Kundakovic and M. Flytzani-Stephanopoulos, Appl. Catal. A: Gen., 1998, 171, 13.

    Google Scholar 

  26. Y. Hu, L. Dong, J. Wang, W. Ding, and Y. Chen, J. Mol. Catal. A: Chem., 2000, 162, 307.

    Google Scholar 

  27. W. Wang, P. Lin, Y. Fu, and G. Cao, Catal. Lett., 2002, 82, 19.

    Google Scholar 

  28. S. Pengpanich, V. Meeyoo, T. Rirksomboon, and K. Bunyakiat, Appl. Catal. A: Gen., 2002, 234, 221.

    Google Scholar 

  29. S. Rossignol, F. Gérard, D. Duprez, J. Mater. Chem., 1999, 9, 1615.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Usachev, N.Y., Gorevaya, I.A., Belanova, E.P. et al. Selective oxidation of CO in excess hydrogen on copper—cerium-containing catalysts. Russian Chemical Bulletin 53, 538–546 (2004). https://doi.org/10.1023/B:RUCB.0000035633.07746.a1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:RUCB.0000035633.07746.a1

Navigation