Skip to main content
Log in

Artificial ribonucleases. 5. Synthesis and ribonuclease activity of tripeptides composed of amino acids involved in catalytic centers of natural ribonucleases

  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The characteristic features of the spatial arrangement of the main functional groups involved in catalytic centers of ribonucleases and nucleases were revealed by computer analysis of the catalytic centers of these enzymes. Based on the results of computer simulation, tripeptides containing Lys, Arg, His or Hia, Thr, and Asn in different combinations were synthesized. In these tripeptides, the distances between the corresponding functional groups are equal to those observed in natural enzymes. The efficacy of RNA cleavage with Arg- and His-containing tripeptides depends on their structure and correlates with the overall positive charge of these compounds. Of all the tripeptides under consideration, compounds bearing the overall charge of +4 exhibit the highest ribonuclease activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. S. Zhdan, I. L. Kuznetsova, A. V. Vlassov, V. N. Sil'nikov, M. A. Zenkova, and V. V. Vlassov, Bioorg. Khim., 1999, 10, 723 [Russ. J. Bioorg. Chem., 1999, 10 (Engl. Transl.)].

    Google Scholar 

  2. M. A. Zenkova, N. L. Chumakova, A. V. Vlassov, N. I. Komarova, A. G. Ven'yaminova, V. V. Vlassov, and V. N. Sil'nikov, Mol. Biol., 2000, 34, 456 [Russ. Mol. Biol., 2000, 34 (Engl. Transl.)].

    Google Scholar 

  3. C. H. Tung, Z. Wei, M. J. Leibowitz, and S. Stein, Proc. Natl. Acad. Sci. USA, 1992, 89, 7114.

    Google Scholar 

  4. B. Barbier and A. Brak, J. Am. Chem. Soc., 1992, 114, 3511.

    Google Scholar 

  5. A. J. Gordon and R. A. Ford, The Chemist's Companion. A Handbook of Practical Data, Techniques, and References, Wiley-Interscience, New York, 1972.

    Google Scholar 

  6. A. A. Gershkovich and V. K. Kibirev, Sintez peptidov. Reagenty i metody [Synthesis of Peptides. Reagents and Methods], Naukova dumka, Kiev, 1987 (in Russian).

    Google Scholar 

  7. L. G. Tyulkina and A. S. Mankin, Anal. Biochem., 1984, 138, 285.

    Google Scholar 

  8. A. V. Vlassov, V. V. Vlassov, and R. Giege, Dokl. Akad. Nauk, 1996, 349, 411 [Dokl. Chem., 1996 (Engl. Transl.)].

    Google Scholar 

  9. N. Strater, W. N. Lipscomb, T. Klabunnde, and B. Krebs, Angew. Chem., Int. Ed. Engl., 1996, 35, 2024.

    Google Scholar 

  10. D. E. Wilcox, Chem. Rev., 1996, 96, 2435.

    Google Scholar 

  11. J. A. Cowan, Chem. Rev., 1998, 98, 1067.

    Google Scholar 

  12. R. A. Kovall and B. W. Matthews, Curr. Opin. Chem. Biol., 1999, 3, 578.

    Google Scholar 

  13. S. V. Shlyapnikov, E. V. Blagova, V. M. Levdikov, V. Yu. Lunin, V. V. Lunin, A. M. Mikhailov, H. Betzel, K. S. Raishankar, and M. Perbandt, Mol. Biol., 1999, 33, 454 [Russ. Mol. Biol., 1999, 33 (Engl. Transl.)].

    Google Scholar 

  14. R. T. Raines, Chem. Rev., 1998, 7, 1045.

    Google Scholar 

  15. T. Nakai, W. Yoshikawa, H. Nakamura, and H. Yoshida, Eur. J. Biochem., 1992, 208, 41.

    Google Scholar 

  16. J. Sevcik, E. J. Dodson, and G. G. Dodson, Acta Crystallogr. B, 1991, 47, 240.

    Google Scholar 

  17. J. Chen, Z. Lu, J. Sakon, and W. E. Stites, J. Mol. Biol., 2000, 303, 125.

    Google Scholar 

  18. J. Wang, D. M. Truckses, F. Abildgaard, Z. Dzakula, Z. Zolnai, and J. L. Markley, J. Biomol. NMR, 1997, 10, 143.

    Google Scholar 

  19. M. D. Miller, J. Cai, and K. L. Krause, J. Mol. Biol., 1999, 288, 975.

    Google Scholar 

  20. M. Y. Reibarkh, D. E. Nolde, L. I. Vasilieva, E. V. Bocharov, A. A. Shulga, M. P. Kirpichnikov, and A. S. Arseniev, FEBS Lett., 1998, 431, 250.

    Google Scholar 

  21. K. M. Polyakov, A. A. Lebedev, A. L. Okorokov, K. I. Panov, A. A. Schulga, A. G. Pavlovsky, M. Y. Karpeisky, and G. G. Dodson, Acta Crystallogr. D., 2002, 58, 744.

    Google Scholar 

  22. J. M. J. Tronchet and I. Komaromi, Int. J. Biol. Macromol., 1993, 15, 69.

    Google Scholar 

  23. G. W. Anderson, J. E. Zimmerman, and F. M. Callahan, J. Am. Chem. Soc., 1964, 86, 1839.

    Google Scholar 

  24. R. Giege, B. Felden, V. N. Silnikov, M. A. Zenkova, and V. V. Vlassov, Methods Enzymol., 2000, 318, 147.

    Google Scholar 

  25. M. Zenkova, N. Beloglazova, V. Sil'nikov, V. Vlassov, and R. Giege, Methods Enzymol., 2001, 341, 468.

    Google Scholar 

  26. M. A. Zenkova, A. V. Vlassov, D. A. Konevets, V. N. Sil'nikov, R. Giege, and V. V. Vlassov, Bioorg. Khim., 2000, 26, 679 [Russ. J. Bioorg. Chem., 2000, 26 (Engl. Transl.)].

    Google Scholar 

  27. B. J. Calnan, B. Tidor, S. Biancalana, D. Hudson, and A. D. Frankel, Science, 1991, 251, 1167.

    Google Scholar 

  28. D. A. Konevetz, I. E. Beck, N. G. Beloglazova, I. V. Sulimenkov, V. N. Sil'nikov, M. A. Zenkova, G. V. Shishkin, and V. V. Vlassov, Tetrahedron, 1999, 55, 503.

    Google Scholar 

  29. B. J. Calnan, B. Tidor, S. Biansalana, D. Hudson, and A. D. Frankel, Science, 1991, 251, 1167.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuznetsova, I.L., Zhdan, N.S., Zenkova, M.A. et al. Artificial ribonucleases. 5. Synthesis and ribonuclease activity of tripeptides composed of amino acids involved in catalytic centers of natural ribonucleases. Russian Chemical Bulletin 53, 455–462 (2004). https://doi.org/10.1023/B:RUCB.0000030824.26304.cb

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:RUCB.0000030824.26304.cb

Navigation