Skip to main content

Ribavirin: Biotechnological Synthesis and Effect on the Reproduction of Vaccinia Virus

Abstract

The biotechnological method of synthesis of ribavirin, vidarabin, and 6-azauridine by the use of immobilized recombinant enzymatic preparations of nucleoside phosphorylase was improved. The effect of ribavirin and its combinations with the other synthesized nucleosides on the reproduction of Vaccinia virus was studied on the culture of Vero cells. The combination of ribavirin and vidarabin was shown to provide the antiviral effect at lesser concentrations than with these compounds taken separately.

This is a preview of subscription content, access via your institution.

REFERENCES

  1. Eliot, G.B., Antiviral Chemotherapy: New Directions, Mills, I. and Corey, L., Eds. Amsterdam: Elsevier, 1986, pp. 118–137.

    Google Scholar 

  2. Roizman, B. and Sears, A., Virology, Field, H.J., Ed., New York: Lippincott-Raven, 1996, pp. 2231–2295.

    Google Scholar 

  3. Marques, V.E., in Phosphonylmethyl Ethers of Nucleo-sides and Their Acyclic Analogues as Antiviral Agents, Martin, J.C., Ed., Washington, DC: American Chemical Society, 1989, pp. 140–155.

    Google Scholar 

  4. Holy, A., Clercq, E., and Votruba, I., in Phosphonylme-thyl Ethers of Nucleosides and Their Acyclic Analogues as Antiviral Agents, Martin, J.C., Ed., Washington, DC: American Chemical Society, 1989, pp. 50–71.

    Google Scholar 

  5. Joklik, W.K., Jungwirth, C., Oda, K., and Woodson, B., in Molecular Biology of Viruses, Colter, J.C. and Paranchych, W., Eds., New York: Academic, 1969, pp.473–494.

    Google Scholar 

  6. Witkowski, J.T., Robins, R.K., Sidwell, R.W., and Simon, L.N., J.Med.Chem., 1972, vol. 15, pp. 1150–1154.

    Google Scholar 

  7. Reist, E.J., Benitez, A., Goodman, L., Baker, B.R., and Lee, W.W., J.Org.Chem., 1962, vol. 27, pp. 3274–3279.

    Google Scholar 

  8. Lukevits, E.Ya. and Zabolotskaya, A.E., Sillil'nyi metod sinteza nukleozidov (Silyl Method of Nucleoside Synthesis), Riga: Zinatne, 1985.

    Google Scholar 

  9. Prystas, M., Gut, J., and Sorm, F., Chem.Ind., 1961, pp.947–948.

  10. Hennen, W.J. and Wong, C.H., J.Org.Chem., 1989, vol.54, pp. 4692–4695.

    Google Scholar 

  11. Bzowska, A., Kulikowska, E., and Shugar, D., Pharmacol.Therap., 2000, vol. 88, pp. 349–425.

    Google Scholar 

  12. Shirae, H., Yokozeki, K., and Kubota, K., Agric.Biol.Chem., 1988, vol. 52, pp. 295–296.

    Google Scholar 

  13. Krenitsky, T.A., Koszalka, G.W., Tuttle, J.V., Ride-out, J.L., and Eliot, G.B., Carbohydr.Res., 1981, vol. 97, pp. 139–146.

    Google Scholar 

  14. Hori, N., Watanabe, M., Sunagawa, K., Uehara, K., and Mikami, Y., J.Biotechnol., 1991, vol. 17, pp. 121–131.

    Google Scholar 

  15. Mikhailopulo, I.A., Zinchenko, A.I., Bokut, S.B., Dudchik, N.V., Barai, V.N., and Kalinichenko, E.N., Biotechnol.Lett., 1992, vol. 14, pp. 885–890.

    Google Scholar 

  16. Esipov, R.S., Gurevich, A.I., Chuvikovsky, D.V., Chupova, L.A., Muravyova, T.I., and Miroshnikov, A.I., Protein Express.Purif., 2002, vol. 24, pp. 56–60.

    Google Scholar 

  17. Esipov, R.S., Gurevich, A.I., Miroshnikov, A.I., and Chuvikovsky, D.V., Patent RF 2179188, 10.02.2002.

  18. Esipov, R.S., Gurevich, A.I., Miroshnikov, A.I., and Chuvikovsky, D.V., Patent RF 2179998, 10.01.2002.560

  19. Jurkiewicz, M., Alegret, S., and Fabregas, E., Anal.Chim.Acta, 1998, vol. 370, pp. 47–58.

    Google Scholar 

  20. Kito, M., Tawa, R., Takeshima, S., and Hirose, S., J.Chromatogr., 1990, vol. 528, pp. 91–99.

    Google Scholar 

  21. North, T.W. and Cohen, S.S., in International Encyclo-pedia of Pharmacology and Therapeutics: Viral Chemotherapy, Shugar, D., Ed., Oxford: Pergamon, 1984, pp.303–340.

    Google Scholar 

  22. Galegov, G.A., Florent'ev, V.L., L'vov, N.D., and Petrova, I.G., Vopr.Med.Khim., 1987, no. 1, pp. 40–51.

    Google Scholar 

  23. Toltzis, P., in Antiviral Chemotherapy.New Directions, Mills, I. and Corey, L., Eds., Amsterdam: Elsevier, 1986, pp. 75–78.

    Google Scholar 

  24. Sidwell, R.W., in Ribavirin.A Broad Spectrum Antiviral Agent, Smith, R.S., Ed., New York: Academic, 1981, pp.23–42.

    Google Scholar 

  25. Lowry, O.H., Rosebrough, N.I., Farr, A.L., and Randall, R.J., J.Biol.Chem., 1951, vol. 193, pp. 265–275.

    Google Scholar 

  26. Furukawa, Y. and Honjo, M., Chem.Pharm.Bull., 1968, vol. 16, pp. 2286–2288.

    Google Scholar 

  27. De Clerq, E., Descamps, J., Verheist, G., Walker, R.T., Jones, A.S., Torrence, P.F., and Shugar, D., J.Infect.Dis.,1980, vol. 141, pp. 563–573.

    Google Scholar 

  28. Field, H.J., Darby, G., and Wildy, P., J.Gen.Virol., 1980, vol. 49, pp. 115–124.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Konstantinova, I.D., Leont'eva, N.A., Galegov, G.A. et al. Ribavirin: Biotechnological Synthesis and Effect on the Reproduction of Vaccinia Virus. Russian Journal of Bioorganic Chemistry 30, 553–560 (2004). https://doi.org/10.1023/B:RUBI.0000049772.18675.34

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:RUBI.0000049772.18675.34

  • 6-azauridine
  • immobilized enzymes
  • purine nucleoside phosphorylase
  • ribavirin
  • uridine phosphorylase
  • Vaccinia virus
  • vidarabin