Skip to main content
Log in

Microscale Analyses of the Formation and Nature of Microbial Biofilm Communities in River Systems

  • Published:
Reviews in Environmental Science and Biotechnology Aims and scope Submit manuscript

Abstract

The review covers aspects of biofilm cultivation, laser scanning microscopy, molecular probes and digital image analyses. This is accomplished through an overview of selected studies which illustrate the application of the microscale approach and laser microscopy techniques to the study of river biofilms and the results obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • B#x00F6;ckelmann U, Manz W, Neu TR & Szewzyk U (2002) A new combined technique of fluorescent in situ hybridization and lectin-binding-analysis (FISH-LBA) for the investigation of lotic microbial aggregates. J. Microbiol. Meth. 49:75–87

    Google Scholar 

  • Bott TL & Kaplan LA (1990) Potential for protozoan grazing of bacteria in streambed sediments. J. N. Am. Benthol. Soc. 9:336–345

    Google Scholar 

  • Carey JH, Fox ME, Brownlee BG, Metcalfe JL & Platford RF (1984) Disappearance kinetics of 2, 4-and 3, 4-dichlorophenol in a fluvial stream. Can. J. Physiol. Pharmacol. 62:971–975

    Google Scholar 

  • Chenier MR, Beaumier D, Roy R, Driscoll BT, Lawrence JR & Greer CW (2003) Impact of seasonal variations and nutrient inputs on the cycling of nitrogen and the degradation of hexadecane by replicated river biofilms. Appl. Environ. Microbiol. 69:5170–5177

    Google Scholar 

  • Choi J-W, Sherr BF & Sherr EB (1999) Dead or alive?A large fraction of ETS-inactive marine bacterioplankton cells as assessed by reduction of CTC, can become ETS-active with incubation and substrate addition. Aquatic Microb. Ecol. 18: 105–115

    Google Scholar 

  • Chrost RJ (1991) Microbial Enzymes in Aquatic Environments. Springer, New York

    Google Scholar 

  • Chrzanowski TH, Crotty RD, Hubbard, JG & Welch RP (1984) Applicability of the fluorescein diacetate method of detecting active bacteria in freshwater. Microb. Ecol. 10:179–185.

    Google Scholar 

  • Cooksey KE (1992) Extracellular polymers in biofilms. In: Melo LF, Bott TR, Fletcher M & Capdeville B (Eds) Biofilms –Science and Technology. NATO ASI Series-Vol. 223. p. 137–147; Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Decho AW (1990) Microbial exopolymer secretions in ocean environments:their role(s) in food webs and marine pro-cesses. Oceanogr. Mar. Biol. Ann. Rev. 28:73–153

    Google Scholar 

  • Flemming, H-C, Schmitt J & Marshall KC (1996) Sorption properties in biofilms. In: Calmano W. & F#x00F6;rstner U. (Eds) Sediment and Toxic Substances (pp. 115–157). Springer Verlag, Berlin.

    Google Scholar 

  • Freeman C & Lock MA (1995) The bio lm polysaccharide matrix:A buffer against changing organic substrate supply. Limnol Oceanog. 40:273–278

    Google Scholar 

  • Freeman C, Chapman PJ, Gilman K, Lock MA, Reynolds B & Wheater HS (1995) Ion exchange mechanisms and the entrapment of nutrients by river biofilms. Hydrobiologia 297:61–65

    Google Scholar 

  • Geesey GG, Richardson WT, Yeomans HG, Irvin RT & Costerton JW (1977) Microscopic examination of natural sessile bacterial populations from an alpine stream. Can. J. Microbiol. 23:1733–1736

    Google Scholar 

  • Geesey GG, Mutch R, Costerton JW & Green RB (1978) Sessile bacteria:An important component of the microbial population in small mountain streams. Limnol. Oceanog. 23: 1214–1223.

    Google Scholar 

  • Geesey GG, Lang L, Hankins MR, lwaoka T & Griffiths PR (1988) Binding of metal ions by extracellular polymers of bio lm bacteria. Water Sci. Technol. 20:16–165

    Google Scholar 

  • Gjaltema A & Griebe T (1995) Laboratory reactors and on-line monitoring:Report of the discussion session. Wat. Sci. Tech. 32:257–261

    Google Scholar 

  • Haak SK & McFeters GA (1982a) Microbial dynamics of an epilithic mat community in a high alpine stream. Appl. Environ. Microbiol. 43:702–707

    Google Scholar 

  • Haak SK & McFeters GA (1982b) Nutritional relationships among microorganisms in an epilithic bio lm community. Microb. Ecol. 8:115–126

    Google Scholar 

  • Headley JV, Peru KM, Lawrence JR & Wolfaardt GM (1995) MS/MS identi cation of transformation products in degra-dative biofilms. J. Anal. Chem. 67:1831–1837

    Google Scholar 

  • Headley JV, Gandrass J, Kuballa J, Peru KM & Gong Y (1998) Rates of sorption and partitioning of contaminants in river biofilm. Environ. Sci Technol. 32:3968–3973

    Google Scholar 

  • Hobbie JE & Lee C (1979) Microbial production of extracel-lular material:Importance in benthic ecology. In: Tenore KR & Coull BC. (Eds) Marine Benthic Dynamics (pp. 231–301). Belle W. Baruch Institute for Marine Biology and Coastal Research, Columbia, South Carolina

  • Huang, K-T, Xu KD, McFeters GA & Stewart PS (1998) Spatial patterns of alkaline phosphatase expression within bacterial colonies and bio lms in response to phosphate starvation. Appl. Environ. Microbiol. 64:1526–1531

    Google Scholar 

  • Kaplan LA & Bott TL (1983) Microbial heterotrophic utilisa-tion of dissolved organic matter in a piedmont stream. Freshwat. Biol. 13:363–377

    Google Scholar 

  • Kaplan LA & Bott TL (1985) Acclimation of stream-bed heterotrophic microflora: Metabolic responses to dissolved organic matter. Freshwat. Biol. 15:479–492

    Google Scholar 

  • Kaplan LA & Bott TL (1989) Diel fluctuations in bacterial activity on streambed substrata during vernal algal blooms: Effects of temperature, water chemistry, and habitat. Limnol. Oceanogr. 34:718–733

    Google Scholar 

  • Lamberti GA, Gregory SV, Ashkenas LR, Steinman AD & McIntire CD (1989) Productive capacity of periphyton as a determinant of plant-herbivore interactions in streams. Ecology 70:1840–1856

    Google Scholar 

  • Lawrence JR & Neu TR (1999) Confocal laser scanning microscopy for analysis of microbial biofilms. Meth. Enzy-mol. 310:131–144

    Google Scholar 

  • Lawrence JR & Snyder RA (1998) Feeding behavior and grazing rates of a Euplotes sp. on attached bacteria. Can. J. Microbiol. 44:623–629

    Google Scholar 

  • Lawrence JR, Korber DR, Hoyle BD, Costerton JW & Caldwell DE (1991) Optical sectioning of microbial biofilms. J. Bacteriol. 173:6558–6567

    Google Scholar 

  • Lawrence JR, Wolfaardt GM & Korber DR (1994) Monitoring diffusion in biofilm matrices using confocal laser microscopy. Appl. Environ. Microbiol. 60:1166–1173

    Google Scholar 

  • Lawrence JR, Korber DR, Wolfaardt GM & Caldwell DE (1995) Bacterial behavioural strategies at interfaces. Ad-vances in Microbial Ecology 14:1–75

    Google Scholar 

  • Lawrence JR, Neu TR & Swerhone GDW (1998a) Application of multiple parameter imaging for the quanti cation of algal, bacterial, and exopolymer components of microbial biofilms. J. Microbiol. Meth. 32:253–261

    Google Scholar 

  • Lawrence JR, Wolfaardt GM & Neu TR (1998b). The Study of bio lms using confocal laser scanning microscopy. In: Wilkinson MHF & Schut F. (Eds. ) Digital Analysis of Microbes. Imaging, Morphometry, Fluorometry and Motil-ity Techniques and Applications. Modern Microbiological Methods Series, (pp. 431–465). John Wiley and Sons, Sussex

    Google Scholar 

  • Lawrence JR, Swerhone GDW & Neu TR (2000) Design and evaluation of a simple rotating annular reactor for replicated bio lm studies. J. Microb. Methods. 42:215–224

    Google Scholar 

  • Lawrence JR, Kopf G, Headley JV & Neu TR (2001) Sorption and metabolism of selected herbicides in river bio lm communities. Can. J. Microbiol. 47:634–641

    Google Scholar 

  • Lawrence JR, Scharf B, Packro G & Neu TR (2002) Microscale evaluation of the effects of grazing by inverte-brates with contrasting feeding modes on river biofilm architecture and composition. Microbial Ecol. 44:199–207

    Google Scholar 

  • Lawrence JR, Swerhone GDW, Leppard GG, Araki T, Zhang X, West MM & Hitchcock AP (2003) Scanning transmission X-ray, laser scanning, and transmission electron microscopy mapping of the exopolymeric matrix of microbial biofilms. Appl. Environ. Microbiol 69:5543–5554

    Google Scholar 

  • Lee N, Nielsen PH, Adreasen KH, Juretschko S, Nielsen JL, Schleifer K-H & Wagner M (1999) Combination of fluores-cent in situ hybridization and microautoradiography –a new tool for structure-function analyses in microbial ecology. Appl. Environ. Microbiol. 65:1289–1297

    Google Scholar 

  • Leff LG (1994) Stream bacterial ecology:a neglected eld? ASM News 60:135–138

    Google Scholar 

  • Lock MA (1993) Attached microbial communities in rivers. In: Ford TE (Ed. ) Aquatic Microbiology (pp 113 –138). Black-well Scientific Publications, Cambridge

    Google Scholar 

  • Lock MA, Wallace RR, Costerton JW, Ventullo RM & Charlton SE (1984) River epilithon:Toward a structural-functional model. OIKOS 42:10–22

    Google Scholar 

  • Lowell RB, Culp JC & Wrona FJ (1995) Stimulation of increased short-term growth and development of mayflies by pulp mill effluent. Environ. Toxicol. Chem. 14:1529–1541

    Google Scholar 

  • Lünsdorf H, Brümmer I, Timmis KN & Wagner-Döbler I (1997) Metal selectivity of in situ microcolonies in bio lms of the Elbe river. J. Bacteriol. 179:31–40

    Google Scholar 

  • Manz W, Wendt-Potthoff K, Neu TR, Szewzyk U & Lawrence JR (1999) Phylogenetic composition, spatial structure and dynamics of lotic bacterial bio lms investigated by fluores-cent in situ hybridization and confocal scanning laser microscopy. Microb. Ecol. 37:225–237

    Google Scholar 

  • Massol-Deya AA, Whallon J, Hickey RF & Tiedje JM (1995) Channel structures in aerobic bio lms of xed-lm reactors treating contaminated groundwater. Appl. Environ. Micro-biol. 61:769–777

    Google Scholar 

  • Mohamed MN, Lawrence JR & Robarts RD (1998) Phospho-rus limitation of heterotrophic bio lms from the Fraser River, British Columbia, and the effect of pulp mill effluent. Microb. Ecol. 36:121–130

    Google Scholar 

  • Møller S, Korber DR, Wolfaardt GM, Molin S. & Caldwell DE (1997) The impact of nutrient composition on a degradative bio lm community. Appl. Environ. Microbiol. 63:2432–2438

    Google Scholar 

  • Nielsen PH & Jahn A (1999) Extraction of EPS. In: Wingender J, Neu TR & Flemming H-C (Eds) Microbial Extracellular Polymeric Substances. Characterization, Structure and Func-tion. (pp 49–72). Springer, Berlin.

    Google Scholar 

  • Nielsen JL, Aquino de Muro M, Nielsen PH (2003) Evaluation of the redox dye 5-cyano-2, 3-tolyl-tetrazolium chloride for activity studies by simulataneous use of microautoradiogra-phy and fluorescence in situ hybridization. Appl. Environ. Microbiol. 69:641–643

    Google Scholar 

  • Neu TR (1994) The challenge to analyse extracellular polymers in biofilms. In: Stal LJ & Caumette P. (Eds), Microbial Mats, Structure, Development and Environmental Signi cance. NATO ASI Series Vol G 35. (pp 221–227) Springer Verlag, Berlin

    Google Scholar 

  • Neu TR, (1996) Signi cance of bacterial surface-active com-pounds in interaction of bacteria with interfaces. Microbiol. Rev. 60:151–166

    Google Scholar 

  • Neu TR (2000). In situ cell and glycoconjugate distribution of river snow as studied by confocal laser scanning microscopy. Aquatic Microb. Ecol. 21:85–95

    Google Scholar 

  • Neu TR & Kuhlicke U (2001) Anwendungen der 2-Photonen Laser Scanning Mikroskopie in der Mikrobiologie. BIOspectrum 7:379–382

    Google Scholar 

  • Neu TR & Marshall KC (1991) Microbial “footprints ”–A new approach to adhesive polymers. Biofouling 3:101–112

    Google Scholar 

  • Neu TR & Lawrence JR (1997). Development and structure of microbial bio lms in river water studied by confocal laser scanning microscopy. FEMS Microbiol Ecol 24:11–25

    Google Scholar 

  • Neu TR & Lawrence JR (1999). Lectin-binding analysis in biofilm systems. Meth Ezymol. 310:145–152

    Google Scholar 

  • Neu TR, Swerhone GDW, & Lawrence JR (2001) Assessment of lectin-binding analysis for in situ detection of glycocon-jugates in biofilm systems. Microbiology 147:299–313

    Google Scholar 

  • Neu TR, Kuhlicke U & Lawrence JR (2002) Assessment of fluorochromes for 2-Photon Laser Scanning Microscopy (2-PLSM) of biofilms. Appl. Environ. Microbiol. 68:901–909

    Google Scholar 

  • Packroff G, Lawrence JR & Neu TR. (2002) In situ confocal laser scanning microscopy of protozoans in pure cultures and complex communities. Acta Protozoologica. 41:245–253

    Google Scholar 

  • Rodriguez GG, Phipps D, Ishiguro K & Ridgway HF (1992) Use of a fluorescent redox probe for direct visualization of actively respiring bacteria. Appl. Environ. Microbiol. 58: 1801–1808

    Google Scholar 

  • Rose FL & Cushing CE (1970) Periphyton:Autoradiography of zinc-65 adsorption. Science 168:576–577

    Google Scholar 

  • Söderström BE (1977) Vital staining of fungi in pure cultures and in soil with fluorescein diacetate. Soil. Biol. Biochem. 9:59–63

    Google Scholar 

  • Steward GF & Azam F (1999) Bromodeoxyuridine as an alternative to H-thymidine for measuring bacterial produc-tivity in aquatic samples. Aquatic Microb. Ecol. 19:57–66

    Google Scholar 

  • Teitzel GM & Parsek MR (2003) Heavy metal resistance of bio lm and planktonic Pseudomonas aeruginosa. Appl. Environ. Microbiol. 69:2313–2320

    Google Scholar 

  • Van Ommen Kloeke F & Geesey GG (1999) Localization and identi cation of populations of phosphatase-active bacterial cells associated with activated sludge flocs. Microb. Ecolol. 38:201–214

    Google Scholar 

  • Vroom JM, De Grauw KJ, Gerritsen HC, Bradshaw DJ, Marsh PD, Watson GK, Birmingham JJ & Allison C (1999) Depth penetration and detection of pH gradients in bio lms by two-photon excitation microscopy. Appl. Environ. Microbiol. 65: 3502–3511

    Google Scholar 

  • Whitchurch CB, Tolker-Nielsen T, Ragas PC & Mattick JS (2002) Extracellular DNA required for bacterial bio lm formation. Science 295:1487

    Google Scholar 

  • Wingender J, Neu TR & Flemming H-C (1999) What are bacterial extracellular polymeric substances? In: Wingender J, Neu TR & Flemming H-C, (Eds) Microbial Extracellular Polymeric Substances. Characterization, Structure and Func-tion, (pp 1–19), Springer, Berlin

    Google Scholar 

  • Winkler M, Lawrence JR & Neu TR (2001) Selective degrada-tion of ibuprofen and clo bric acid in two model river bio lm systems. Water Research 35:3197–3205

    Google Scholar 

  • Wolfaardt GM, Lawrence JR, Robarts RD, Caldwell SJ & Caldwell DE (1994) Multicellular organization in a degrada-tive bio lm community. Appl. Environ. Microbiol. 60:434–446

    Google Scholar 

  • Wolfaardt GM, Lawrence JR, Robarts RD & Caldwell DE (1995) Bioaccumulation of the herbicide diclofop in extracel-lular polymers and its utilization by a bio lm community dur-ing starvation. Appl. Environ. Microbiol. 61:152–158

    Google Scholar 

  • Wolfaardt GM, Lawrence JR & Korber DR (1999) Function of EPS in microbial biofilms. In: Wingender J, Neu TR & Flemming H-C (Eds) Microbial Extracellular Substances. (pp. 171–200). Springer Verlag, Berlin.

    Google Scholar 

  • Wuertz S. Mueller E, Spaeth R, Pfleiderer P & Flemming H-C (2000) Detection of heavy metals in bacterial biofilms and microbial flocs with the fluorescent complexing agent Newport Green. J. Industrial Microbiol. Biotechnol. 24:116–123.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lawrence, J.R., Neu, T.R. Microscale Analyses of the Formation and Nature of Microbial Biofilm Communities in River Systems. Re/Views in Environmental Science and Bio/Technology 2, 85–97 (2003). https://doi.org/10.1023/B:RESB.0000040472.53337.57

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:RESB.0000040472.53337.57

Navigation