Skip to main content
Log in

Anaerobic Granular Sludge Bioreactor Technology

  • Published:
Reviews in Environmental Science and Biotechnology Aims and scope Submit manuscript

Abstract

Anaerobic digestion is a mature wastewater treatment technology, with worldwide application. The predominantly applied bioreactor designs, such as the upflow anaerobic sludge blanket and expanded granular sludge bed, are based on the spontaneous formation of granular sludge. Despite the exploitation of granular reactors at full-scale for more than two decades, the mechanisms of granulation are not completely understood and numerous theories have been put forward to describe the process from a biological, ecological and engineering point of view. New technological opportunities are emerging for anaerobic digestion, aided by an improved understanding of microbiological and environmental factors affecting the formation and activity of anaerobic granular sludge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahn YH (2000)Physicochemical and microbial aspects of anaerobic granular pellets.J.Environ.Sci.Health A35:1617–1635

    Google Scholar 

  • Ahring BK, Christiansen N, Mathrani I, Hendriksen HV, Macario AJL & Conway de Macario E (1992)Introduction of a de novo bioremediation ability, aryl reductive dechlorination, into anaerobic granular sludge by inoculation of sludge with Desulfomonile tiedjei.Appl.Environ.Microbiol. 58:3677–3682

    Google Scholar 

  • Akunna JC, Bizeau C & Moletta R (1993)Nitrate and nitrite reductions with anaerobic sludge using various carbon sources:Glucose, glycerol, acetic acid, lactic acid and methanol, Wat. Res.27(8):1303–1312

    Google Scholar 

  • Amann RI (1995)Fluorescently-labelled, rRNA-targeted oligonucleotide probes in the study of microbial ecology. Mol. Ecol.4:543–554

    Google Scholar 

  • Amann R, Lemmer H & Wagner M (1998)Monitoring the community structure of wastewater plants:A comparison of old and new techniques.FEMS Microbiol.Ecol.25:205–215

    Google Scholar 

  • Blum DJW & Speece RE (1991)A database of chemical toxicity to environmental bacteria and its use in interspecies comparisons and correlations.J.Water Pollut.Control Fed.63:198–207

    Google Scholar 

  • Blum DJW, Hergenroeder R, Parkin GF & Speece RE (1986) Anaerobic treatment of coal conversion wastewater constituents:Biodegradability and toxicity.J.Water Pollut.Contol Fed.58:122–131

    Google Scholar 

  • Borghans AJML & van Driel A (1988)Application of the biothane UASB reactor to a chemical wastewater containing phenol and formaldehyde.Poster-Papers, 5th International Symposium, Anaerobic Digestion

  • Borneman J & Triplett EW (1997)Molecular microbial diversity in soils from eastern Amazonia:Evidence for unusual microorganisms and microbial population shifts associated with deforestation.Appl.Envir.Microbiol.63:2647–2653

    Google Scholar 

  • Caprihan A & Fukushima E (1990)Flow measurements by NMR.Phys.Rep.(Review Section on Physics Letters)198: 195–235

    Google Scholar 

  • Chan OC, Liu WT & Fang HHP (2001)Study of microbial community of brewery-treating granular sludge by denaturing gradient gel electrophoresis of 16S rRNA gene.Wat.Sci. Tech.43(1):77–82

    Google Scholar 

  • Christiansen N, Hendriksen HV, Jarvinen KT & Ahring BK (1995)Degradation of chlorinated aromatic compounds in UASB reactors.Wat.Sci.Tech.31(1):249–259

    Google Scholar 

  • Colleran E & Pistilli A (1994)Activity test system for determining the toxicity of xenobiotic chemicals to the methanogenic process.Ann.Microbiol.Enzymol.44:1–18

    Google Scholar 

  • Colleran E, Pender S, Philpott U, O #x2018;</del>'Flaherty V & Leahy B (1998)Full-scale and lab-scale anaerobic treatment of citric acid production wastewater.Biodegradation.9(3–4):233–45

    Google Scholar 

  • Collins G, Woods A, McHugh S, Carton M & O'Flaherty V (2003)Microbial diversity and methanogenic activity during start-up of psychrophilic anaerobic digesters treating synthetic industrial wastewaters.FEMS Microbiol.Ecol.46(2): 159–170

    Google Scholar 

  • Constable SWC & Kras R (1998)Selection, start-up and operation of an anaerobic pretreatment system for wastewater from a thermoplastic production facility.Proc.WEFTEC, October 3–7, 1999, Orlando, USA

  • Davies DG, Parsek MR, Pearson JP, Iglewski BH, Costerton JW & Greenberg EP (1998)The involvement of cell-to-cell signals in the development of a bacterial bio lm.Science 280(5361):295–298

    Google Scholar 

  • Delbes C, Moletta R & Godon JJ (2001)Bacterial and archaeal 16S rDNA and 16S rRNA dynamics during an acetate crisis in an anaerobic digester ecosystem.FEMS Microbiol.Ecol. 35:19–26

    Google Scholar 

  • Denac M & Dunn IJ (1988)Packed and fluidised-bed bio lm reactor performance for anaerobic waste water treatment. Biotech.Bioeng.32:159–173

    Google Scholar 

  • De Zeeuw W (1984)Acclimatisation of anaerobic sludge for UASB reactor start-up.PhD thesis, Agricultural University of Wageningen, The Netherlands

    Google Scholar 

  • Dojka MA, Hugenholtz P, Haack SK & Pace NR (1998) Microbial diversity in a hydrocarbon-and chlorinatedsolvent-contaminated aquifer undergoing intrinsic bioremediation.Appl.Environ.Microbiol.64(10):3869–3877

    Google Scholar 

  • Driessen W & Yspeert P (1999)Anaerobic Treatment of low, medium and high strength efluent in the agro-industry.Wat. Sci.Tech.40:221–228

    Google Scholar 

  • Driessen W, Habets L & Groeneveld N (1996)New development in the design of anaerobic sludge bed reactors.In: Presented at the 2nd IAWQ Conference on Pretreatment of Industrial Wastewaters.Oct 16–18, Athens, Greece, p 9

  • Dubourgier HC, Prensier G & Albagnac G (1987)Structure and microbial activities of granular anaerobic sludge.In:Lettinga G, Zehnder AJB, Grotenhuis JTC & HulshoffPol LW (Eds), Granular Anaerobic Sludge:Microbiology and Technology, Pudoc, Wageningen, The Netherlands (pp 18–33)

    Google Scholar 

  • Duhamel M, Wehr SD, Yu L, Rizvi H, Seepersad D, Dworatzek S, Cox SE & Edwards EA (2002)Comparison of anaerobic dechlorinating enrichment cultures maintained on tetrachloroethene, trichloroethene, cis-dichloroethene and vinyl chloride.Wat.Res.36(17):4193–4202

    Google Scholar 

  • El-Mamouni R, Leduc R & Guiot SR (1998)Influence of synthetic and natural polymers on the anaerobic granulation process.Wat.Sci.Tech.38:341–347

    Google Scholar 

  • Elmitwalli TA (2000)Anaerobic treatment of domestic sewage at low temperature.In:Proceedings of the VI Latin-American Workshop and Seminar on Anaerobic Digestion (pp 60–68)

  • Fang HHP & Chan OC (1997)Toxicity of phenol toward anaerobic biogranules.Wat.Res.31:2229–2242

    Google Scholar 

  • Fang HHP, Lau IWC & Chung DWC (1997)Inhibition of methanogenic activity of starch-degrading granules by aromatic pollutants.Wat.Sci.Tech.35(8):247–253

    Google Scholar 

  • Fernandez A, Huang S, Seston S, Xing J, Hickey R, Criddle C & Tiedje J (1999)How stable is stable?Function versus community composition.Appl.Environ.Microbiol.65: 3697–3704

    Google Scholar 

  • Fox GE, Stackebrandt E, Hespell RB, Gibson J, Manilo. J, Dyer TA, Wolfe RS, Balch WE, Tanner RS, Magrum LJ, Zablen LB, Blakemore R, Gupta R, Bouen L, Lewis BJ, Stahl DA, Luehrsen KR, Chen KN & Woese CR (1980)The phylogeny of prokaryotes.Science 209:457–463

    Google Scholar 

  • Frankin RJ (2001)Full-scale experiences with anaerobic treatment of industrial wastewater.Wat.Sci.Tech.44:1–6

    Google Scholar 

  • Godon J-J, Zumstein E, Dabart P, Habouzit F & Moletta R (1997)Molecular microbial diversity of an anaerobic digester as determined by small-subunit rDNA sequence analysis. Appl.Environ.Microbiol.63:2802–2813

    Google Scholar 

  • Gonzalez-Gil G, Lens P, van Aelst AC, Van As H, Versprille AI & Lettinga G (2001)Cluster structure of anaerobic aggregates of an expanded granular sludge bed reactor.Appl. Environ.Microbiol.67:3683–3692

    Google Scholar 

  • Griffen ME, McMahon DD, Mackie RI, & Raskin L (1998) Methanogenic population dynamics during start-up of anaerobic digesters treating municipal solid waste and biosolids.Biotechnol.Bioeng.57:342–355

    Google Scholar 

  • Grotenhuis JTC, Smit M, Plugge CM, Yuansheng X, Van Lammeren AAM, Stams AJM & Zehnder AJB (1991) Bacteriological composition and structure of granular sludge adapted to different substrates.Appl.Environ.Microbiol.57: 1942–1949

    Google Scholar 

  • Guiot SR, Arcand Y & Chavarie C (1992)Advantages of fluidization on granule size and activity development in up flow anaerobic sludge bed reactors.Wat.Sci.Tech.26: 897–906

    Google Scholar 

  • Guiot SR, Tartakovsky B, Lanthier M, Levesque MJ, Manuel MF, Beaudet R, Greer CW & Villemur R (2002)Strategies for augmenting the pentachlorophenol degradation potential of UASB anaerobic granules.Wat.Sci.Tech.45:35–41

    Google Scholar 

  • Habets LHA, Engelaar AJHH & Groenveld N (1997)Anaerobic treatment of inuline efluent in an internal circulation reactor.Wat.Sci.Tech.35:189–197

    Google Scholar 

  • Hack PJFM, Vellinga SHJ & Habets LHA (1988)Growth of granular sludge in the biopaq IC reactor.In:Lettinga G et al. (Eds), Granular Anaerobic Sludge:Microbiology and Technology.Proc.Workshop Lunteren 1987, PUDOC Wageningen, 1988 (pp.211–215)

  • Hao OJ (2000)Metal effects on sulfur cycle bacteria and metal removal by sulfate reducing bacteria.In:Lens P & HulshoffPol LW (Eds), Environmental technologies to treat sulfur pollution:Principles and Engineering, IWA Publishing. London, UK (pp 393–414)

    Google Scholar 

  • Harmsen HJM, Akkermans ADL, Stams AJM & De Vos WM (1996)Population dynamics of propionate-oxidizing bacteria under methanogenic and sul dogenic conditions in anaerobic granular sludge.Appl.Environ.Microbiol.62:2163–2168

    Google Scholar 

  • Henry MP, Donlon BA, Lens PN & Colleran E (1996)Use of anaerobic hybrid reactors for treatment of synthetic pharmaceutical wastewaters containing organic solvents.J.Chem. Tech.Biotech.66:251–264

    Google Scholar 

  • Hickey RF (1991)Startup, operation, monitoring and control of high-rate anaerobic treatment systems.Wat.Sci.Tech.24: 207–255

    Google Scholar 

  • Hirsch R (1984)Microcolony formation and consortia.In: Marshall KC (Ed.)Microbial Adhesion and Aggregation, Springer-Verlag, Berlin (pp 373–393)

    Google Scholar 

  • Hughes J, Ramsden DK & Symes KC (1990)The flocculation of bacteria using cationic synthetic flocculants and chitosan. Biotechnol.Tech.4:55–60

    Google Scholar 

  • HulshoffPol LW (1989)The phenomenon of granulation of anaerobic sludge.PhD thesis, Agricultural University, Wageningen, The Netherlands

    Google Scholar 

  • HulshoffPol LW, De Zeeuw WJ, Velzeboer CTM & Lettinga G (1983)Granulation in UASB reactors.Wat.Sci.Tech.15: 291–304

    Google Scholar 

  • Hulshoff-Pol LW, Heijnekamp K & Lettinga G (1987)The selection pressure as a driving force behind the granulation of anaerobic sludge.In:Lettinga G, Zehnder AJB, Grotenhuis JTC & HulshoffPol LW (Eds)Granular Anaerobic Sludge: Microbiology and Technology Pudoc, Wageningen, The Netherlands (pp 153–161)

    Google Scholar 

  • Hulshoff-Pol LW, Lens PNL, Stams AJM & Lettinga G (1998) Anaerobic treatment of sulphate-rich wastewaters.Biodegradation 9:213–224

    Google Scholar 

  • Hunter-Cevera JC (1998)The value of microbial diversity. Curr.Opin.Microbiol.1:278–285

    Google Scholar 

  • Imai T, Ukita M, Liu J, Sekine M, Nakanishi H & Fukagawa M (1997)Advanced start-up of UASB reactors by adding water absorbing polymer.Wat.Sci.Tech.36:399–406

    Google Scholar 

  • Iza J, Colleran E, Paris JM & Wu WM (1991)International workshop on anaerobic treatment technology for municipal and industrial wastewaters:Summary paper.Wat.Sci.Tech. 24:1–16

    Google Scholar 

  • Johnston CD, Rayner JL, Patterson BM & Davis GB (1998)Volatilization and biodegradation of dissolved BTEX-Contaminated Groundwater.J.Contam.Hydrol. 53:377–404

    Google Scholar 

  • Kalogo Y, M'Bassiguie Seka A & Verstraete W (2001) Enhancing the start-up of UASB reactor treating domestic wastewater by adding a water extract of Moringa oleifera seeds.Appl.Environ.Microbiol.55:644–651

    Google Scholar 

  • Kalyuzhnyi SV, Gladchenko MA, Sklyar VI, Kizimenko YS & Shcherbakov SS (2001)Psychrophilic one-and two-step systems for pre-treatment of winery waste water.Wat.Sci. Tech.44(4):23–31

    Google Scholar 

  • Kato MT, Field JA & Lettinga G (1997)The anaerobic treatment of low strength wastewaters in UASB and EGSB reactors.Wat.Sci.Tech.36(6–7), 375–382

    Google Scholar 

  • Kato MT, Field JA, Versteeg P & Lettinga G (1994)Feasibility of expanded granular sludge bed reactors for the anaerobic treatment of low strength soluble wastewaters.Biotechnol. Bioeng.44:469–479

    Google Scholar 

  • Kettunen RH & Rintala JA (1998)Performance of an on-site UASB reactor treating leachate at low temperature, Wat. Res.32:537–546

    Google Scholar 

  • Kjellerup BV, Olesen BH, Nielsen JL, Frølund B, Ødum S & Nielsen PH (2003)Monitoring and characterisation of bacteria in corroding district heating systems using fluorescence in situ hybridisation and microautoradiography.Wat. Sci.Tech.47(5):117–122

    Google Scholar 

  • Leclerc M, Delbes C, Moletta R & Godon JJ (2001)Single strand conformation polymorphism monitoring of 16S rDNA Archaea during start-up of an anaerobic digester. FEMS Microbiol.Ecol.34:213–220

    Google Scholar 

  • Lens P & Van As H (2003)Use of 1H NMR to study transport processes in bio lms.In:Lens P, Moran AP, Mahony T, Stoodley P & O'Flaherty V (Eds)Bio lms in Medicine, Industry and Environmental Biotechnology:Characteristics, Analysis and Control.IWA publ.(pp 285–307)

  • Lens PNL & Kuenen JG (2001)The biological sulfur cycle: Novel opportunities for environmental biotechnology.Wat. Sci.Tech.44:57–66

    Google Scholar 

  • Lens PNL, De Beer D, Cronenberg CCH, Houwen FP, Ottengraf SPP & Verstraete WH (1993)Heterogeneous distribution of microbial activity in methanogenic aggregates: pH and glucose micropro les.Appl.Environ.Microbiol.59: 3803–3815

    Google Scholar 

  • Lens PNL, Klijn R, van Lier JB & Lettinga G (2003)Effect of speci c gas loading rate on thermophilic (55 C)acidifying (pH 6)and sulfate reducing granular sludge reactors.Wat. Res.37:1033–1047

    Google Scholar 

  • Lettinga G (1995)Anaerobic digestion and wastewater treatment systems.Antonie van Leeuwenhoek 67:3–28

    Google Scholar 

  • Lettinga G (2001)Digestion and degradation, air for life.Wat. Sci.Tech.44(8):157–176

    Google Scholar 

  • Lettinga G & HulshoffPol LW (1991)UASB-process design for various types of wastewaters.Wat.Sci.Tech.67:3–28

    Google Scholar 

  • Lettinga G, de Zeeuw W, HulshoffPol LW, Wiegant WM & Rinzeman A (1985)Anaerobic wastewater treatment based on biomass retention with emphasis on the UASB process. In:Proceedings of the 4th International Symposium on Anaerobic digestion, Guangzhou, China (pp 279–301)

  • Lettinga G, Hobma SW, HulshoffPol LW, de Zeeuw W, de Jong P, Grin PC and Roersma RE (1982)Design, operation and economy of anaerobic treatment.Paper presented at the IAWPR Specialised seminar:Anaerobic Treatment of Wastewater in Fixed-lm reactors.June 16–18 Copenhagen, Denmark

  • Lettinga G, HulshoffPol LW, Koster IW, Wiegant WM, de Zeeuw W, Rinzema A, Grin PC, Roersma RE & Hobma SW (1984)High-rate anaerobic wastewater treatment using the UASB-reactor under a wide range of temperature conditions. Biotech.Eng.Rev.2:253–284

    Google Scholar 

  • Lettinga G, Rebac S, Parshina S, Nozhevnikova A, van Lier J & Stams A (1999)High-rate anaerobic treatment of wastewater at low temperatures.Appl.Environ.Microbiol.65(4): 1696–1702

    Google Scholar 

  • Lettinga G, Rebac S & Zeeman G (2001)Challenge of psychrophilic anaerobic wastewater treatment.Trends Biotechnol.19(9):363–370

    Google Scholar 

  • Lettinga G, van Velsen AFM, Hobma SW, de Zeeuw W & Klapwijk A (1980)Use of the up flow sludge blanket (UASB) reactor concept for biological wastewater treatment, especially for anaerobic treatment.Biotech.Bioeng.22:699–734

    Google Scholar 

  • Liu Y & Tay JH (2002)The essential role of hydrodynamic shear force in the formation of bio lm and granular sludge. Wat.Res.36:1653–1665

    Google Scholar 

  • Liu WT, Marsh TL, Cheng H & Forney LJ (1997)Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA.Appl.Environ.Microbiol.63:4516–4522

    Google Scholar 

  • Liu Y, Xu HL, Yang SF & Tay JH (2003)Mechanisms and models for anaerobic granulation in up flow anaerobic sludge blanket reactor.Wat.Res.37:661–673

    Google Scholar 

  • Macarie H (2000)Overview of the application of anaerobic treatment to chemical and petrochemical wastewaters.Wat. Sci.Tech.42:201–214

    Google Scholar 

  • MacLeod FA, Guiot SR & Costerton JW (1990)Layered structure of bacterial aggregates produced in an up flow anaerobic sludge bed and lter reactor.Appl.Environ. Microbiol.56:1598–1607

    Google Scholar 

  • Mahoney EM, Varangu LK, Cairns WL, Kosaric N & Murray RGE (1987)The effect of calcium on microbial aggregation during UASB reactor start-up.Wat.Sci.Tech.19:249–260

    Google Scholar 

  • McCarty PL (1964)Anaerobic Waste Treatment fundamentals. Public Works, September, 107–112, October, 123–126, November, 91–94, December, 95–99

  • McCarty PL (2001)The development of anaerobic treatment and its future.Wat.Sci.Tech.44(8):149–156

    Google Scholar 

  • McCartney DM & Oleszkiewicz JA (1993)Competition between methanogens and sulfate reducers:Effect of COD:sulfate ratio and acclimation.Wat.Environ.Res.65: 655–664

    Google Scholar 

  • McHugh S, Carton M, Mahony T & O'Flaherty V (2003) Methanogenic population structure in a variety of anaerobic bioreactor sludges.FEMS Microbiol.Lett.219:297–304

    Google Scholar 

  • McHugh S, Carton M, Collins G & O'Flaherty V (2004) Reactor performance and microbial community dynamics during anaerobic biological treatment of wastewaters at 16–37 C. FEMS Microbiol.Ecol.48(3):369–378

    Google Scholar 

  • Mills DK, Fitzgerald K, Litch eld CD & Gillevet PM (2003)A comparison of DNA pro ling techniques for monitoring nutrient impact on microbial community composition during bioremediation of petroleum-contaminated soils.J.Microbiol.Meth.54(1), 57–74

    Google Scholar 

  • Moter A & Gobel UB (2000)Fluorescence in situ hybridization (FISH)for direct visualization of micro-organisms. J.Microbiol.Meth.41:85–112

    Google Scholar 

  • Ndabigengesere A, Narasiah K & Taldot BG (1995) Active agents and mechanism of coagulation of turbid waters using Moringa oleifera. Wat. Res. 29:703–710

    Google Scholar 

  • Nielsen JL & Nielsen PH (2002)Quanti cation of functional groups in activated sludge by microautoradiography.Wat. Sci.Tech.46(1–2):389–395

    Google Scholar 

  • Noyola A & Moreno G (1994)Granule production from raw waste activated sludge.Wat.Sci.Tech.30:339–346

    Google Scholar 

  • O'Flaherty V & Lens P (2003)Bio lms in wastewater treatment systems.In:Lens P, Moran AP, Mahony T, Stoodley P & O'Flaherty V (Eds)Bio lms in Medicine, Industry and Environmental Biotechnology:Characteristics, Analysis and Control.IWA Publishing, London (pp 132–159)

    Google Scholar 

  • O'Flaherty V & Colleran E (2000)Sulfur problems in anaerobic digestion.In:Lens P & HulshoffPol L (Eds)Environmental technologies to treat sulphur pollution:Principles and engineering.IWA Publishing, London (pp 467–485)

    Google Scholar 

  • O'Flaherty V, Colohan S, Mulkerrins D & Colleran E (1999) Effect of sulphate addition on volatile fatty acid and ethanol degradation in an anaerobic hybrid reactor.II:Microbial interactions and toxic effects.Biores.Technol.68:109–120

    Google Scholar 

  • O'Flaherty V, Lens P, Leahy B & Colleran E (1998)Long-term competition between sulphate-reducing and methane-producing bacteria during full-scale anaerobic treatment of citric acid production wastewater.Water Res.32:815–825

    Google Scholar 

  • Okabe S, Naitoh H, Satoh H & Watanabe Y (2002)Structure and function of nitrifying bio lms as determined by molecular techniques and the use of microelectrodes.Wat.Sci. Tech.46(1–2), 233–241

    Google Scholar 

  • O'Reilly C (2003)Biological treatment of sulphate-containing industrial wastewater.PhD thesis.National University of Ireland, Galway

    Google Scholar 

  • Palenzuela-Rollon A, Zeeman G, Lubberding HJ, Lettinga G & Alaerts GJ (2001)Treatment of sh processing wastewater in a one or two step Up flow anaerobic sludge blanket (UASB) reactor.In:Proceedings of the 9th International Symposium on Anaerobic Digestion, Antwerp, Belgium (pp 323–328)

  • Parkin GF, Speece RE, Yang CHJ and Kocher WM (1983) Response of methane fermentation systems to industrial toxicants.J.Wat.Pollut.Control Fed.55:44–52

    Google Scholar 

  • Pereboom JHF (1994)Size distribution model for methanogenic granules from full scale UASB and IC reactors.Wat. Sci.Tech..30:211–221

    Google Scholar 

  • Pereboom JHF & Vereijken TLFM (1994)Methanogenic granule development in full scale internal circulation reactors.Wat.Sci.Tech.30(8):9–21

    Google Scholar 

  • Pereboom JHF, DeMan G & Su IT (1994)Start-up of full-scale UASB reactor for the treatment of terephthalic acid wastewater.Poster-Papers, 7th International Symposium, Anaerobic Digestion

  • Picard C, Di Cello M, Ventura R, Fani R & Guckert A (2000) Frequency and biodiversity of 2, 4-diacetylphloroglucinolproducing bacteria isolated from the maize rhizosphere at different stages of plant growth.Appl.Environ.Microbiol. 66:948–955

    Google Scholar 

  • Raskin L, Stromley JM, Rittmann BE & Stahl DA (1994) Group-speci c 16S rRNA hybridization probes to describe natural communities of methanogens.Appl.Environ.Microbiol.60:1232–1240

    Google Scholar 

  • Rebac S, Ruskova J, Gerbens S, van Lier JB, Stams AJM & Lettinga G (1995)High-rate anaerobic treatment of wastewater under psychrophilic conditions.J.Ferment.Bioeng.80: 15–22

    Google Scholar 

  • Rebac S, van Lier JB, Lens P, van Cappellen J, Vermuelen M, Stams AJM, Dekkers F, Swinkels KTM and Lettinga G (1998)Psychrophilic (6–15 C)high-rate anaerobic treatment of malting wastewater in a two module EGSB system. Biotechnol.Prog.14:856–864

    Google Scholar 

  • Rebac S, van Lier JB, Lens P, Stams AJM, Dekkers F, Swinkels KTM and Lettinga G (1999)Psychrophilic anaerobic treatment of low strength wastewaters.Wat.Sci.Tech.39(5):203–210

    Google Scholar 

  • Rintala JA & Puhakka JA (1994)Anaerobic treatment in pulp and paper-mill waste management:A review.Biores.Technol.47:1–18

    Google Scholar 

  • Rintala JA, Sanz Martin JL & Lettinga G (1991)Thermophilic anaerobic treatment of sulfate-rich pulp and paper integrate process water.Wat.Sci.Tech.24:149–160

    Google Scholar 

  • Rocheleau S, Greer CW, Lawrence JR, Cantin C, Laramee L & Guiot SR (1999)Differentiation of Methanosaeta concilii and Methanosarcina barkeri in anaerobic mesophilic granular sludge by fluorescent in situ hybridization and confocal scanning laser microscopy.Appl.Environ.Microbiol.65: 2222–2229

    Google Scholar 

  • Sallis PJ & Uyanik S (2003)Granule development in a split-feed anaerobic baffed reactor.Biores.Tech.89:255–265

    Google Scholar 

  • Sam-Soon PALNS, Loewenthal RE, Dold PL & Marais GR (1987)Hypothesis for pelletisation in the up flow anaerobic sludge bed reactor.Wat.SA 13:69–80

    Google Scholar 

  • Sayed S, van Campen L & Lettinga G (1987)Anaerobic treatment of slaughterhouse waste using a granular sludge UASB reactor.Biol.Wastes 21:11–28

    Google Scholar 

  • Schmidt JE & Ahring BK (1993)Effects of magnesium on thermophilic acetate-degrading granules in up flow anaerobic sludge blanket (UASB)reactors.Enz.Microb.Tech.15:304–310

    Google Scholar 

  • Schmidt JE & Ahring BK (1996)Granular sludge formation in up flow anaerobic sludge blanket (UASB)reactors.Biotechnol Bioeng.49:229–246

    Google Scholar 

  • Schmidt JE & Ahring BK (1999)Immobilization patterns and dynamics of acetate-utilizing methanogens immobilized in sterile granular sludge in up flow anaerobic sludge blanket reactors.Appl.Environ.Microbiol.65:1050–1054

    Google Scholar 

  • Sekiguchi Y, Kamagata Y, Nakamura K, Syutsubo K, Ohashi A, Harada H, & Nakamura K (1998)Diversity of mesophilic and thermophilic granular sludge determined by 16S rRNA gene analysis.Microbiol.22:2655–2665

    Google Scholar 

  • Singh KS & Viraraghavan T (2001)Up flow anaerobic sludge blanket (UASB)reactor treatment of municpal wastewater. In:Proceedings of the 9th International Symposium on Anaerobic Digestion, 2001, Antwerp, Belgium (pp 493–498)

  • Stams AJM (1994)Metabolic interactions between anaerobic bacteria in methanogenic environments.Antonie van Leeuwenhoek 66:271–294

    Google Scholar 

  • Tawaga T, Takahashi H, Sekiguchi Y, Ohashi A & Harada H (2002)Pilot-plant study on anaerobic treatment of a lipidand protein-rich food industrial wastewater by a thermophilic multi-staged UASB reactor.Wat.Sci.Tech.45(10):225–230

    Google Scholar 

  • Tay JH, Xu HL & Teo KC (2000)Molecular mechanism of granulation.I:H+ translocation-dehydration theory.J. Environ.Eng.126:403–410

    Google Scholar 

  • Thaveesri J, Daffonchio D, Liessens B, Vandermeren P & Verstraete W (1995)Granulation and sludge bed stability in up flow anaerobic sludge bed reactors in relation to surface thermodynamics.Appl.Environ.Microbiol.61:3681–3686

    Google Scholar 

  • Uyanik S, Sallis PJ and Anderson GK (2002)The effect of polymer addition on granulation in an anaerobic baffed reactor (ABR).Part 1:Process performance.Wat.Res.36: 933–943

    Google Scholar 

  • Van Lier JB, Boersma F, Debets MMWH & Lettinga G (1994) 'High rate' thermophilic anaerobic wastewater treatment in compartmentalized up flow reactors.Wat.Sci.Tech.30:338–347

    Google Scholar 

  • Van Lier JB, Tilche A, Ahring BK, Macarie H, Moletta R, Dohanyos M, HulshoffPol LW, Lens P & Verstraete W (2001a)New perspectives in anaerobic digestion.Wat.Sci. Tech.43(1):1–18

    Google Scholar 

  • Van Lier JB, van der Zee FP, Tan NCG, Rebac S & Kleerebezem R (2001b)Advances in high-rate anaerobic treatment:staging of reactor systems.Wat.Sci.Tech.44(8): 15–25

    Google Scholar 

  • Vellinga SHJ, Hack PJFM & vd Vlugt AJ (1986)New type high rate anaerobic reactor:rst experience on semi-technical scale with a revolutionary and high loaded anaerobic system.In: Anaerobic treatment, a grown-up technology, EWPCA Conference, 1986, Aquatech, Amsterdam (pp 547–562)

  • Visser FA, van Lier JB, Macario AJL & de Macario EC (1991) Diversity and population dynamics of methanogenic bacteria in a granular consortium.Appl.Environ.Microbiol.57: 1728–1734

    Google Scholar 

  • Wang YT, Suidan MT & Pfeffer JT (1984)Anaerobic activated carbon lter for the degradation of polycyclic n-aromatic compounds.J.Wat.Pollut.Con.F.56(12):1247–1253

    Google Scholar 

  • Wiegant WM (1987)The' spaghetti theory' on anaerobic sludge formation or the inevitability of granulation.In:Lettinga G, Zehnder AJB, Grotenhuis JTC & HulshoffPol LW (Eds) Granular Anaerobic Sludge:Microbiology and Technology Pudoc, Wageningen, The Netherlands (pp 146–152)

    Google Scholar 

  • Wiggins BA, Jones SH & Alexander M (1987)Explanations for the acclimation period preceding the mineralization of organic chemicals in aquatic environments.Appl.Environ. Microbiol.53:791–796

    Google Scholar 

  • Wilderer PA, Bungartz HJ, Lemmer H, Wagner M, Keller J, & Wuertz S (2002)Modern scienti c methods and their potential in wastewater science and technology.Wat.Res. 36(2):370–393

    Google Scholar 

  • Wimpenny JWT & Colasanti R (1997)A unifying hypothesis for the structure of microbial bio lms based on cellular automaton models.FEMS Microbiol.Ecol.22:1–16

    Google Scholar 

  • Wirtz RA & Dague RR (1997)Laboratory studies on enhancement of granulation in the anaerobic sequencing batch reactor.Wat.Sci.Tech.36:279–286

    Google Scholar 

  • Wu JH, Liu WT, Tseng IC & Cheng SS (2001)Characterization of microbial consortia in a terephthalate-degrading anaerobic granular sludge system.Microbiol.147:373–382

    Google Scholar 

  • Wu WM, Hu JC, Gu XS & Gu GG (1987)Cultivation of anaerobic granular sludge in UASB reactors with aerobic activated sludge as seed.Wat.Res.21:789–799

    Google Scholar 

  • Wu WM, Thiele JH, Jain MK & Zeikus JG (1993)Metabolic properties and kinetics of methanogenic granules.Appl. Microbiol.Biotechnol.39:804–811

    Google Scholar 

  • Yan, YGand Tay JH(1997)Characterisation of the granulations process during UASB start-up.Wat.Res.31(7):1573–1580

    Google Scholar 

  • Yoda M, Kitagawa M & Mayayii Y (1989)Granular sludge formation in the expanded micro-carrier process.Wat.Sci. Tech.21:109–122

    Google Scholar 

  • Young JC (1991)Factors affecting the design and performance of up flow anaerobic lters.Wat.Sci.Tech.24:199–205

    Google Scholar 

  • Young JC & McCarty PL (1969)The anaerobic lter for wastewater treatment.J.Wat.Poll.Cont.Fed.41:160–166

    Google Scholar 

  • Young JC, Kim IS, Page IC, Wilson DR, Brown GJ & Gocci AA (2000).Two stage anaerobic treatment of puri ed terephthalic acid production wastewaters.Wat.Sci.Tech. 42(5–6):277–282

    Google Scholar 

  • Yspeer P, Vereijken T, Vellinga S & de Vegt., A (1993)The IC reactor for anaerobic treatment of industrial wastewater.In: Proceedings of the 1993 Food Industry Environmental Conference.Atlanta, USA (pp 487–497)

  • Yu HQ, Fang HHP & Tay JH (2001a)Enhanced sludge granulation in up flow anaerobic sludge blanket (UASB) reactors by aluminium chloride.Chemosphere 44(1), 31–36

    Google Scholar 

  • Yu HQ, Tay JH & Fang, HHP.(2001b)The roles of calcium in sludge granulation during uasb reactor start-up.Wat.Res. 35(4), 1052–1060

    Google Scholar 

  • Zeikus JG (1982)Microbial intermediary metabolism in anaerobic digestion.In:Proceedings of the 2nd International Symposium on Anaerobic Digestion, 1981.Elsevier Biomedical Press, Amsterdam, The Netherlands

    Google Scholar 

  • Zheng D, Alm EW, Stahl DA & Raskin L (1996)Characterisation of universal small-subunit rRNA hybridisation probes for quantitative molecular microbial ecological studies.Appl. Environ.Microbiol.62:4504–4513

    Google Scholar 

  • Zoetendal EG, Akkermans ADL & deVos WM (1998)Temperature gradient gel electrophoresis of 16S rRNA from human fecal samples reveals stable and host-speci c communities of active bacteria.Appl.Environ.Microbiol.64: 3854–3859

    Google Scholar 

  • Zoutberg GR & de Been P (1997)The Biobed EGSB (Expanded granular sludge bed)system covers shortcomings of the up flow anaerobic sludge blanket reactor in the chemical industry.Wat.Sci.Tech.35:183–188

    Google Scholar 

  • Zoutberg GR & Frankin R (1996)Anaerobic treatment of chemical and brewery waste water with a new type of anaerobic reactor;the biobed EGSB reactor.Wat.Sci. Tech.34(5–6):375–381

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McHugh, S., O'Reilly, C., Mahony, T. et al. Anaerobic Granular Sludge Bioreactor Technology. Re/Views in Environmental Science and Bio/Technology 2, 225–245 (2003). https://doi.org/10.1023/B:RESB.0000040465.45300.97

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:RESB.0000040465.45300.97

Navigation