Skip to main content
Log in

Biofilms in Drinking Water Distribution Systems

  • Published:
Reviews in Environmental Science and Biotechnology Aims and scope Submit manuscript

Abstract

Biofilms and loose deposits in drinking water distribution systems provide a mosaic of electrochemical and nutritive environments. Limiting biofilms requires a combination of actions with impact is relatively low as discussed in this article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abernathy CG & Camper AK (1998) The effect of phosphorus based corrosion inhibitors and low disinfectant residuals on distribution biofilms. In: Water Quality Technology Conference, 1 –4 November 1998, San Diego, California, Amer. Water Wks Assoc., Denver, Colorado, USA

    Google Scholar 

  • Ainsworth RG (1978) Discoloured water in distribution systems In: Proc. Annual Conference of the American Water Works Association, Atlantic City, New Jersey, Amer. Water Wks Assoc., Denver, Colorado, USA

    Google Scholar 

  • Allen MJ, Taylor RH & Geldreich FE (1980) The occurrence of microorganisms in water main encrustations. J. Am. Water Wks Assoc. 72: 614–625

    Google Scholar 

  • Allison DG, Gilbert P, Lappin-Scott HM & Wilson M (Ed) (2000) Community Structure and Cooperation in Biofilms. Cambridge University Press, UK, 349 pp

    Google Scholar 

  • Appenzeller BMR (2002) Effet du phosphate sur les interactions bactéries-produits de corrosion en réseau de distribution d'eau potable. Ph.D. Thesis no.725, University Henri poincaré/Nancy 1, Nancy, France, 191 pp

  • Appenzeller BMR, Batté M, Mathieu L, Block J-C, Lahoussine V, Cavard J & Gatel D (2001) Effect of adding phosphate in drinking water on bacterial growth in slightly and highly corroded pipes. Water Res. 35: 1100–1105

    Google Scholar 

  • Appenzeller BMR, Duval YB, Thomas F and Block J-C (2002) Influence of phosphate on bacterial adhesion onto iron oxyhydroxide in drinking water. Environ. Sci. Technol. 36: 646–652

    Google Scholar 

  • Ascon-Cabrera MA, Thomas D & Lebeault JM (1995) Activity of synchronised cells of a steady-state biofilm recirculated reactor during xenobiotic biodegradation. Appl. Environ. Microbiol. 61: 920–925

    Google Scholar 

  • Azeredo J, Visser J & Oliveira R (1999) Exopolymers in bacterial adhesion: Interpretation in terms of DLVO and XDLVO theories. Colloïds Surf. B: Biointerfaces 14: 141–148

    Google Scholar 

  • Bakke R, Trulear MG, Robinson JA & Characklis WG (1984) Activities of Pseudomonas aeruginosa in biofilms, steady state. Biotechnol. Bioeng. 26: 1418–1424

    Google Scholar 

  • Barbeau B, Julienne K, Gauthier V, Millette R & Prévost M (1999) Dead-end flushing of a distribution system, short and long-term impacts on water quality. In: Water Quality Technolonoly Conference, Tampa, Florida, USA. Amer. Water Wks Assoc, Denver, Colorado, USA, 13 pp

    Google Scholar 

  • Bardouniatis E, Ceri H & Olson ME (2003) Biofilm formation and biocide susceptibility testing of Mycobacterium fortuitum and Mycrobacterium marinum. Curr. Microbiol. 46: 28–32

    Google Scholar 

  • Batté M (2001) Effets des phosphates sur la taxonomie et la physiologie des bactéries dans les bio lms d'eau potable. Ph.D. Thesis, University Henri-Poincaré/Nancy 1, Nancy, France, 234 pp

  • Batté M, Koudjonou B, Laurent P, Mathieu L, Coallier J & Prévost M (2003a) Biofilm responses to ageing and to a high phosphate load in a bench-scale drinking water system. Water Res. 37: 1351–1361

    Google Scholar 

  • Batté M, Mathieu L, Laurent L & Prévost M (2003b) Influence of phosphate and disinfection on the composition of biofilms from drinking water systems as measured by fluorescence in situ hybridisation. Can. J. Microbiol. 49: 741–753

    Google Scholar 

  • Battin TJ, Kaplan LA, Newbold JD, Cheng X & Hansen C (2003) Effects of current velocity on the nascent architecture of stream microbial biofilms Appl. Environ. Microbiol. 69(9): 5443–5452

    Google Scholar 

  • Besner M-C, Gauthier V, Servais P Camper A (2002) Explaining the occurrence of coliforms in distribution systems. J.Amer.Water Wks Assoc. 94(8): 95–109

    Google Scholar 

  • Block J-C, Mathieu L, Servais P, Fontvieille D & Werner P (1992) Indigenous bacterial inocula for measuring the biodegradable dissolved organic carbon (BDOC) in waters. Water Res. 26: 481–486

    Google Scholar 

  • Block J-C, Haudidier K, Paquin J-L, Miazga J & Lévi Y (1993) Biofilm accumulation in drinking water distribution systems. Biofouling 6: 333–343

    Google Scholar 

  • Block J-C, Sibille I, Gatel D, Reasoner DJ, Lykins B & Clark RM (1997) Biodiversity in drinking water distribution system. In: Jones JG & Sutcliffe D (Eds) The Microbiological Quality of Water (pp 63–71). Royal Soc. Public Hlth Hyg. Publishers, London, UK

    Google Scholar 

  • Block J-C, Appenzeller BMR, Boualam M, Yanez C, Mathieu L, Jorand F, Merel S, Saby S & Hartemann P (2002) Counting what? Stressing environment change the meaning of HPC in drinking waters. HPC. Bacteria in drinking water –Public Health implication? NSF International Symposium, 22 –24 Avril, Genève, Suisse (pp 525 –533)

  • Bodmer T, Miltner E & Bermudez LE (2000) Mycobacterium avium resists exposure to the acidic conditions stomach. FEMS Microbiol. Lett. 182: 45–49

    Google Scholar 

  • Boe-Hansen R, Albrechtsen H-J, Arvin E & Jorgensen C (2002) Bulk water phase and biofilm growth in drinking water at low nutrient conditions. Water Res. 36: 4477–4486

    Google Scholar 

  • Boualam M, Fass S, Saby S, Lahoussine V, Cavard J, Gatel D & Mathieu L (2003) Organic matter quality and survival of coliforms in low nutritive waters. J. Amer. Water Wks Assoc. 95(8): 119–126

    Google Scholar 

  • Bouwer EJ (1989) Transformation of xenobiotics in biofilms. In: Characklis WG & Wilderer PA (Eds) Structure and Function of Biofilms (pp 251–267) John Wiley Publishers, New York, USA, 387 pp

    Google Scholar 

  • British Standard (1988) Suitability of non-metallic products for use in contact with water intended for human consumption with regard to their effect on the quality of water. Section 2.4 Growth of Aquatic Microorganisms. British Standards Institution BS 6920 2.4

  • Brocca D, Arvin E & Mosbaek H (2000) Migration of organic additives from polyethylene pipelines into drinking water. IWA Conference, Paris, July 2000

  • Brözel VS & Cloete TE (1993) Bacterial resistance to conventional water treatment biocides. Biodeterior. Abst. 7: 387–395

    Google Scholar 

  • Bryers JD (2000) Biofilm formation and persistence. In: Bryers JD (Ed) Biofilms II, Process Analysis and Applications (pp 45–88) Wiley Liss, New York, USA

    Google Scholar 

  • Bunn JEG, MacKay WG, Thomas JE, Reid DC & Weaver LT (2002) Detection of Helicobacter pylori DNA in drinking water biofilms: Implications for transmission in early life. Lett. Appl. Microbiol. 34: 450–454

    Google Scholar 

  • Butterfield PW, Camper AK, Biederman JA & Bargmeyer AM (2002) Minimizing bio lm in the presence of iron oxides and humic substances. Water Res. 36(15): 3898–3910

    Google Scholar 

  • Cador JM (2002) Le renouvellement du patrimoine en canalisations d'eau potable en France. Report prepared by Geophen for Assemblée des départements de France et le Ministère du territoire et de l'Environnement,18 pp

  • Carrière A, Barbeau B, Gauthier V, Morissette C, Millette R & Lalumière A (2002) Unidirectional flushing, loose deposits characterization in test-zones of three Canadian distribution systems In: Proceedings Water Quality Technology Conference, Seattle, Wa, USA, November 2002. Amer. Water Wks Assoc, Denver, Colorado, USA

    Google Scholar 

  • Chang C-T, Wang L-Y, Liao C-Y & Huang S-P (2002) Identification of nontuberculous mycobacteria existing in tap water by PCR-restriction fragment length polymorphism. Appl. Environ. Microbiol. 68: 3159–3161

    Google Scholar 

  • Chesney JA, Eaton JW & Mahoney JR (1996) Bacterial glutathione,a sacri cial defense against chlorine compounds. J. Bacteriol. 178: 2131–2135

    Google Scholar 

  • Christman MF, Morgan RW, Jacobson FS & Ames BN (1985) Positive control of a regulon for defenses against oxidative stress and some heat-shock proteins in Salmonella typhimurium. Cell 41: 753–762

    Google Scholar 

  • Cirillo JD, Falkow S, Tompkins LS & Bermudez LE (1997) Interaction of Mycobacerium avium with environmental amoebae enhances virulence. Inf. Immun. 65: 3759–3767

    Google Scholar 

  • Colwell RR & Grimes DJ (Ed) (2000) Nonculturable Microorganisms in the Environment. ASM Press, Washington, USA, 354 pp

    Google Scholar 

  • Crissot-Laruade M, Merlet N & Legube B (1999) Formation de biofilms dans les réseaux de distribution d'eau à faible potentiel nutritionnel,exemple d'une eau thermale. J. Europ. Hydrol. 30: 201–219

    Google Scholar 

  • Croué J-P, Korshin GV & Benjamin M (Ed) (2000) Characterization of Natural Organic Matter in Drinking Water. Amer. Water Wks Assoc Research Foundation and Amer. Water Wks Assoc, USA

    Google Scholar 

  • Dailloux M, Laurain C, Weber M & Hartemann P (1999) Water and nontuberculous mycobacteria. Water Res. 33: 2219–2228

    Google Scholar 

  • Dailloux M, Albert M, Laurain C, Andolfatto S, Lozniewski A, Hartemann P & Mathieu L (2003) Mycobacterium xenopi and drinking water biofilms Appl. Environ. Microbiol. 69(11): 6946–6948

    Google Scholar 

  • Davies GD, Parsek MR, Pearson JP, Iglewski BH, Costerton JW & Greenberg EP (1998) The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280: 295–298

    Google Scholar 

  • Davrainville F, Guilloteau H, Boutter C, Mercier J-L & Block J-C (2002) Comparaison de trois séquences de nettoyage/ désinfection des dépôts d'un réseau véhiculant une eau thermale. In: Proceedings of “Journe ´es Information Eaux ”, 18 –20 September 2002, ESIP, Poitiers, France

    Google Scholar 

  • De Beer D, Srinivasan R & Stewart PS (1994a) Direct measurement of chlorine penetration into bio lms during disinfection. Appl. Environ. Microbiol. 60: 4339–4344

    Google Scholar 

  • De Beer D, Stoodley P, Roe F & Lewandowski Z (1994b) Effects of biofilm structures on oxygen distribution and mass transport. Biotechnol. Bioeng. 43: 1131–1138

    Google Scholar 

  • De Rosa S (1993) Loose deposits in water mains, Report DoE 3118-/2. Department of the Environment, London, 161pp

    Google Scholar 

  • Demple B (1996) Redox signaling and gene control in the Escherichia coli soxRS oxidative stress regulon –a review. Gene 179: 53–57

    Google Scholar 

  • Demple B & Halbrook J (1983) Inductible repair of oxidative DNA damage in Escherichia coli. Nature 304: 466–468

    Google Scholar 

  • Devender KJ (1995) Microbial colonization of the surface of stainless steel coupons in a deionized water system. Water Res. 29: 1869–1876

    Google Scholar 

  • Ding H & Demple B (1996) Glutathione-mediated destabilization in vitro of [2Fe –2S ]centers in the SoxR regulatory protein. Proc. Natl. Acad. Sci. 93: 9449–9453

    Google Scholar 

  • Dogget MS (2000) Characterization of fungal bio lms within a municipal water distribution system. Appl. Environ. Microbiol. 66: 1249–1251

    Google Scholar 

  • Donlan RM & Pipes WO (1988) Selected drinking water characteristics and attached microbial population density. J. Am. Water Wks Assoc. 80: 70–76

    Google Scholar 

  • Dukan S & Touati D (1996) Hypochlorous acid stress in Escherichia coli, resistance, DNA damage, and comparison with hydrogen peroxide stress. J. Bacteriol. 178: 6145–6150

    Google Scholar 

  • Dukan S, Dadon S, Smulski DR & Belkin S (1996) Hypochlorous acid activates the heat shock and soxRS systems of Escherichia coli. Appl. Environ. Microbiol. 62: 4003–4008

    Google Scholar 

  • DVGW (1990) Vermehrung von Microorganismen aut Materialen für den Trinkwasserbereich, Prüfung und Bewertung, Technische Regeln, Arbeitsblatt W270, DVGW

  • Ernst PB & Gold BD (2000) The disease spectrum of Helicobacter pylori: The immunopathogenesis of gastroduodenal ulcer and gastric cancer. Ann. Rev. Microbiol. 54: 615–640

    Google Scholar 

  • Falkinham JO, Norton CD & LeChevallier MW (2001) Factors influencing numbers of Mycobacterium avium, Mycobacterium intracellulare, and other Mycobacteria in drinking water distribution systems. Appl. Environ. Microbiol. 67(3): 1225–1231

    Google Scholar 

  • Fass S, Dincher ML, Reasoner DJ, Gatel D & Block J-C (1996) Fate of Escherichia coli experimentally injected in a drinking water distribution system. Water Res. 30: 2215–2221

    Google Scholar 

  • Fass S, Block J-C, Boualam M, Gauthier V, Gatel D, Cavard J, Benabdallah S & Lahoussine V (2003) Release of organic matter in a discontinuously chlorinated drinking water network. Water Res. 37: 493–500

    Google Scholar 

  • Flemming HC (2002) Biofouling in water systems –cases, causes and countermeasures. Appl. Microbiol. Biotechnol. 59: 629–640

    Google Scholar 

  • Flemming HC & Geesey GG (Ed) (1990) Biofouling and Biocorrosion in Industrial Water Systems. Springer-Verlag Publishers, Berlin, Germany, 220 pp

    Google Scholar 

  • Forslund J, Kjolhede T & Nilsson PH (1991) Influence of plastic materials on drinking water quality parameters. Water Supply 9: 11–15

    Google Scholar 

  • Frias J, Ribas F & Lucena F (2001) Effects of different nutrients on bacterial growth in a pilot distribution system. Antonie Van Leeuwenhoek 80(2): 129–138

    Google Scholar 

  • Garthright WE, Archer DL & Kvenberg JE (1988) Estimates of incidence and costs of intestinal infectious diseases. Publ. Health. Rep. 103: 107–116

    Google Scholar 

  • Gauthier V (1998) Les particules dans les réseaux de distribution d'eau potable, caractérisation et impact sur la qualité de l'eau distribuée. Ph.D. Thesis of University of Henri-Poin-caré/Nancy I, Nancy, France, 190 pp

  • Gauthier V, Rosin C, Mathieu L, Portal JM, Block J-C, Chaix P & Gatel D (1996) Characterization of the loose deposits in drinking water distribution systems, In: Proceedings Water Quality Technol. Conf., Boston, Ma, USA, 14 pp Amer. Water Wks Assoc., Denver, Colorado, USA

    Google Scholar 

  • Gauthier V, Besner MC, Trépanier M, Barbeau B, Millette R, Chapleau R & Prévost M (1999a) Understanding the microbial quality of drinking water using distribution system structure information and hydraulic modeling, In: Proceedings Water Quality Technol. Conf. of Amer. Water Wks Assoc., Tampa, Florida, USA, 10 pp

    Google Scholar 

  • Gauthier V, Gérard B, Portal JM, Block J-C & Gatel D (1999b) Organic matter as loose deposits in a drinking water distribution system, Water Res. 33(4): 1014–1026

    Google Scholar 

  • Gauthier V, Redercher S & Block J-C (1999c) Chlorine inactivation of Sphingomonas cells attached to goethite particles in drinking water. Appl. Environ. Microbiol. 65: 355–357

    Google Scholar 

  • Gauthier V, Barbeau B, Millette R, Block J-C & Prévost M (2001) Suspended particles in the drinking water of two distribution systems. Water Sci. Technol. 1(4): 237–245

    Google Scholar 

  • Gjaltema A, Arts PAM, Van Loosdrecht MCM, Kuenen JG & Hijnen JY (1994) Heterogeneity of biofilms in rotating annular reactors, occurrence, structure, and consequences. Biotechnol. Bioeng. 44: 194–204

    Google Scholar 

  • Gofti L, Balducci F, Gratacap-Cavailler B, Joret JC, Ferley JP & Zmirou D (1999) Waterborne microbiological risk assessment, epidemiological validation of dose –response functions for viruses and protozoans. Epidemiology 4: S56 (abstract)

    Google Scholar 

  • Hallam NB, West JR, Forster CF & Simms J (2001) The potential for biofilm growth in water distribution systems. Water Res. 17: 4063–4071

    Google Scholar 

  • Hartford OM & Dowds BCA (1992) Cloning and characterization of genes induced by hydrogen peroxide in Bacillus subtilis. J. Gen. Microbiol. 138: 2061–2068

    Google Scholar 

  • Hegarty JP, Dowd MT & Baker KH (1999) Occurrence of Helocobacter pylori in surface water in the United States. J. Appl. Microbiol. 87: 697–701

    Google Scholar 

  • Hersman LE, Huang A, Maurice PA & Forsythe JH (2000). Siderophore production and iron reduction by Pseudomonas mendocina in response to iron deprivation. Geomicrobiol. J. 17: 261–273

    Google Scholar 

  • Hersman LE, Forsythe JH, Ticknor LO & Maurice PA (2001). Growth of Pseudomonas mendocina on Fe(III)(hydr)oxides. Appl. Environ. Microbiol. 67(10): 4448–4453

    Google Scholar 

  • Hiemstra T & Van Riemsdijk WH (1996) A surface structural approach to ion adsorption: The charge distribution (CD) model. J. Colloid Interface Sci. 179: 488–508

    Google Scholar 

  • Hulten K, Han SW, Enroth H, Klein PD, Opekun AR, Evans DG, Engstand L, Graham DY & El-Zaatari FA (1996) Helicobacter pylori in the drinking water in Peru. Gastroenterol. 110: 1031–10335

    Google Scholar 

  • Hulten K, Enroth H, Nyström T & Engstrand L (1998) Presence of Helicobacter pylori DNA species in Swedish water. J. Appl. Microbiol. 85: 282–286

    Google Scholar 

  • Kalmbach S (1998) Polyphasic characterization of the microbial population of drinking water biofilms. PhD Thesis, Berlin, Germany, 125 pp

  • Kalmbach S, Manz W, Wecke J & Szewzyk U (1999) Aquabacterium gen. nov., with description of Aquabacterium citratiphilum sp.nov., Aquabacterium parvum sp.nov; and Aquabacterium commune sp.nov., three in situ dominant bacterial species from the Berlin drinking water system. Int. J. Syst. Bacteriol. 49: 769–777

    Google Scholar 

  • Kalmbach S, Manz W & Szewzyk U (2000) Development of a new method to determine the metabolic potential of bacteria in drinking water biofilms, probe active counts (PAC). In: Flemming H-C, Szewzyk U & Griebe T (Eds) Biofilms, Investigative Methods and Applications (pp 107 –121). Technomic Publishing, Lancaster, UK

    Google Scholar 

  • Katsuwon J & Anderson AJ (1989) Response of plant-colonizing Pseudomonads to hydrogen peroxide. Appl. Environ. Microbiol. 55: 2985–2989

    Google Scholar 

  • Keinänen MM, Korhonen LK, Lehtola MJ, Miettinen IT, Martikainen PJ, Vartiainen T & Suutari MH (2002) The microbial community structure of drinking water biofilms can be affected by phosphorus availability. Appl. Environ. Microbiol. 68(1): 434–439

    Google Scholar 

  • Kent GP, Greenspan JR, Herndon JL, Mofenson LM, Harris JAS, Eng TR & Waskin HA (1988) Epidemic giardiasis caused by a contaminated water supply. Am. J. Public Health 78: 139–143

    Google Scholar 

  • Kerr CJ, Osborn KS, Robson GD & Handley PS (1999) The relationship between pipe material and bio lm formation in a laboratory model system. J. Appl. Microbiol. Symposium Suppl. 85: 29S–38S

    Google Scholar 

  • Kielemoes J, Hammes F & Verstraete W (2000) Measurement of microbial colonisation of two types of stainless steel. Environ. Technol. 21: 831–843

    Google Scholar 

  • Kierek K & Watnick PI (2003) Environmental determinants of Vibrio cholerae biofilm development. Appl. Environ. Microbiol. 69(9): 5079–5088

    Google Scholar 

  • Kornberg A (1994) Inorganic polyphosphates: A molecular fossil come to life. In: Torriani-Gorini A, Yagil E & Silver S (Eds) Phosphate in Microorganisms: Cellular and Molecular Biology (pp 208–204). ASM Press, Washington, DC, USA

    Google Scholar 

  • Kornberg A & Fraley CD (2000) Inorganic polyphosphate: A molecule fossil come to life. ASM News. 66(5): 275–280

    Google Scholar 

  • Le Dantec C, Duguet J-P, Montiel A, Dumoutier N, Dubrou S & Vincent V (2002) Occurrence of mycobacteria in water treatment lines and water distribution systems. Appl. Environ. Microbiol. 68: 5318–5325

    Google Scholar 

  • LeChevallier MW, Babcock TM & Lee RG (1987) Examination and characterization of distribution system biofilms. Appl. Environ. Microbiol. 53(12): 2714–2724

    Google Scholar 

  • LeChevallier MW, Lowry CD, Lee RG & Gibbon DL (1993). Examining the relationship between iron corrosion and the disinfection of biofilm bacteria. J. Am. Water Works Assoc. 85(7): 111–123

    Google Scholar 

  • Leclerc H, Schwartzbrod L & Dei-Cas E (2002) microbial agents associated with waterborne diseases. Crit. Rev. Microbiol. 28(4): 371–409

    Google Scholar 

  • Lehtola MJ, Miettinen IT, Vartiainen T & Martikainen PJ (1999) A new sensitive bioassay for determination of microbially available phosphorus in water. Appl. Environ. Microbiol. 65(5): 2032–2034

    Google Scholar 

  • Lehtola MJ, Miettinen IT & Martikainen PJ (2002) Biofim formation in drinking water affected by low concentration of phosphorus. Can. J. Microbiol. 48(6): 494–499

    Google Scholar 

  • Lehtola MJ, Nissinen TK, Miettinen IT, Martikainen PJ & Vartiainen T (2004) Removal of soft deposits from the distribution system improves the drinking water quality. Water Res. 38: 601–610

    Google Scholar 

  • Lévi Y, Randon G, Denojean C, Plagiardini A, Vajente G & Champsaur H (1992) Study of a distribution network with a very low level of dissolved organic matter, the network of Nice. Sci. Eau 5: 225–243

    Google Scholar 

  • Leyval C, Arz C, Block J-C & Rizet M (1984) Escherichia coli resistance to chlorine after successive chlorinations. Environ. Technol Lett. 5: 359–364

    Google Scholar 

  • Lisle JT & Rose JB (1995) Gene exchange in drinking water and bio lms by natural transformation. Water Sci. Technol. 31: 41–46

    Google Scholar 

  • Livanainen EE, Katila M-L & Martikainen PJ (1999) Mycobacteria in drinking water networks; occurrence in water and loose deposits, formation of biofilms. In: 20th Annual Congress of the European Society of Mycobacteriology, Lucerne, CH

  • Lovley DR (1995) Microbial reduction of iron, manganese and other metals. Adv.Agron. 54: 175–231

    Google Scholar 

  • Lytle DA & Snoeyink VL.(2002) Effect of ortho-and polyphosphates on the properties of iron particles and suspensions. J. Am. Water. Wks Assoc. 94(10): 87–99

    Google Scholar 

  • Manz W, Szewzyk U, Ericsson P, Amann R, Schleifer K-H & Stenström TA (1993) In situ identification of bacteria in drinking water and adjoining biofilms by hybridization with 16S and 23S r RNA-directed fluorescent oligonucleotides probes. Appl. Environ. Microbiol. 59: 2293–2298

    Google Scholar 

  • Marciano-Cabral F, MacLean R, Mensah A & LaPat-Polasko L (2003) Identification of Naegleria fowleri in domestic water sources by nested PCR. Appl. Environ. Microbiol. 69(10): 5864–5869

    Google Scholar 

  • Martiny AC, Jorgensen TM, Albrechtsen H-J, Arvin E & Molin S (2003) Long-term succession of structure and diversity of a bio lm formed in a model drinking water distribution system. Appl. Environ. Microbiol. 69: 6899–6907

    Google Scholar 

  • Massol-Deyà AA, Whallon J, Hickey RF & Tiedje JM (1995) Channel structure in aerobic biofilms of xed-lm reactors treating contaminated groundwater. Appl. Environ. Microbiol. 61: 769–777

    Google Scholar 

  • Mathieu L, Paquin J-L, Block J-C, Randon G, Maillard J & Reasoner DJ (1992) Parameters governing bacterial growth in water distribution systems. Sci. Eau 5: 91–112

    Google Scholar 

  • Mathieu L, Paquin J-L, Henriet C, Cavard J & Hartemann Ph (1998) Influence de la nature des matériaux de canalisation sur la prolifération bactérienne: Mise en æuvre des tests anglais et hollandais. TSM 93: 37–44

    Google Scholar 

  • McFeters G & LeChevallier MW (2000) Chemical disinfection and injury of bacteria in water. In: Colwell RR & Grimes DJ (Eds) Nonculturable Microorganisms in the Environment, Chapter 15, (pp 255–275). ASM Press, Washington

    Google Scholar 

  • McKeown I, Orr P, Macdonald S, Kabani A, Brown R, Coghlan G, Dawood M, Embil J, Sargent M, Smart G & Bernstein CN (1999) Helicobacter pylori in the Canadian artic: Seroprevalence and detection in community water samples. J. Gastroenterol. 94: 1823–1829

    Google Scholar 

  • Meister A (1983) Selective modification of glutathione metabolism. Science 220: 472–477

    Google Scholar 

  • Miettinen IT, Vartiainen T & Martikainen PJ (1997) Phosphorus and bacterial growth in drinking water. Appl. Environ. Microbiol. 63: 3242–3245

    Google Scholar 

  • Mizoguchi H, Fujioka T & Nasu N (1999) Evidence for viability of coccoid forms of Helicobacter pylori. J. Gastroenterol. 34: 32–36

    Google Scholar 

  • Morin P, Gauthier V, Saby S & Block JC (1999) Bacterial resistance to chlorine through attachment to particles and pipes surfaces in drinking water distribution systems. In: Keevil CW, Godfree A, Holt D & Dow C (Eds) Biofilms in Aquatic Systems (pp 171–190). Royal Society of Chemistry, Cambridge, UK

    Google Scholar 

  • Morrisey AB, Aisu TO, Falkinham TO, Eriki PP, Eliner JJ Daniel TM (1992) Absence of Mycobacterium avium complex disease in patients with AIDS. J. Acquired Immune Deciency Syndromes 5: 477–478

    Google Scholar 

  • Müller J & Janz S (1993) Modulation of the H2O2-induced SOS response in Escherichia coli PQ300 by amino acids,metal chelators, antioxidants, and scavengers of reactive oxygen species. Environ. Mol. Mutagenesis 22: 157–163

    Google Scholar 

  • Nathan C & Shiloh MU (2000) Reactive oxygen species and nitrogen intermediates in the relationship between mammalian hosts and microbial pathogens. Proc. Natl. Acad. Sci. USA 97: 8841–8848

    Google Scholar 

  • Niquette P, Servais P & Savoir R (2000) Impacts of pipe materials on densities of xed bacterial biomass in a drinking water distribution system. Water Res. 34: 1952–1956

    Google Scholar 

  • Norton CD & LeChevallier MW (2000) A pilot study of bacteriological population changes through potable water treatment and distribution. Appl. Environ. Microbiol. 66(1): 268–276

    Google Scholar 

  • Paquin J-L, Block J-C, Haudidier K, Hartemann P, Colin F, Miazga J & Lévi Y (1992) Effet du chlore sur la colonisation bactérienne d'un réseau expérimental de distribution d'eau. Sci. Eau 5: 399–414

    Google Scholar 

  • Park SR, MacKay WG & Reid DC (2001) Helicobacter sp. recovered from drinking water bio lm sampled from a water distribution system. Water Res. 35(6): 1624–1626

    Google Scholar 

  • Payment P (1997) Epidemiology of endemic gastrointestinal and respiratory diseases, incidence, fraction attributable to tap water and cost to society. Water Sci. Technol. 35(11 –12): 7–10

    Google Scholar 

  • Payment P, Franco E, Richardson L & Siemiatycki J (1991a) Gastrointestinal health effects associated with the consumption of drinking water produced by point-of-use domestic reverse-osmosis ltration units. Appl. Environ. Microbiol. 57: 945–948

    Google Scholar 

  • Payment P, Richardson L, Siemiatycki J, Dewar R, Edwardes M & Franco E (1991b) A randomized trial to evaluate the risk of gastrointestinal disease due to the consumption of drinking water meeting currently accepted microbiological standards. Am. J. Public Health 81: 703–708

    Google Scholar 

  • Payment P, Coffin E & Paquette G (1994) Blood agar to detect virulence factors in tap water heterotrophique bacteria. Appl. Environ. Microbiol. 60: 1179–1183

    Google Scholar 

  • Payment P, Siemiatycki J, Richardson L, Renaud G, Franco E & Prévost M (1997) A prospective epidemiological study of gastrointestinal health effects due to consumption of drinking water. Intern. J. Environ. Health Res. 7: 5–31

    Google Scholar 

  • Pedersen K (1990) Biofilm development on stainless steel and PVC surfaces in drinking water. Water Res. 24: 239–243

    Google Scholar 

  • Pelletier PA, du Moulin GC & Stottmeier DD (1988) Mycobacteria in public water supplies: Comparative resistance to chlorine. Microbiol. Sci. 5(5): 147–148

    Google Scholar 

  • Percival SL, Knapp JS, Edyvean RGJ & Wales DS (1998) Biofilms, mains water and stainless steel. Water Res. 32: 2187–2201

    Google Scholar 

  • Percival SL, Walker JT and Hunter PR (Eds) (2000) Microbiological Aspects of Biofilms and Drinking Water. CRC Press, Washington, DC, 229 pp

    Google Scholar 

  • Persson P, Nilsson N & Sjoberg S (1996) Structure and bonding of orthophosphate ions at the iron oxide-aqueous interface. J. Colloid Interface Sci. 177: 263–275

    Google Scholar 

  • Prévost M, Rompré A, Coallier J, Servais P, Laurent P, Clément B & Lafrance P (1998) Suspended bacterial biomass and activity in full-scale drinking water distribution systems, impact of water treatment. Water Res. 32: 1393–1406

    Google Scholar 

  • Quignon F, Sardin M, Kiéné L & Schwartzbrod L (1997) Poliovirus-1 inactivation and interaction with biofilm: A pilot-scale study. Appl. Environ. Microbiol. 63: 978–982

    Google Scholar 

  • Rashid MH, Rao NN & Kornberg A (2000a) Inorganic polyphosphate is required for the motility of bacterial pathogens. J. Bacteriol. 182(1): 225–227

    Google Scholar 

  • Rashid MH, Rumbaugh K, Passador L, Davies DG, Hamood AN, Iglewski BH & Kornberg A (2000b) Polyphosphate kinase is essential for biofilm development,quorum sensing, and virulence of Pseudomonas aeruginosa. PNAS 97(17): 9636–9641

    Google Scholar 

  • Ridgway HF & Olson BH (1981) Scanning electron microscope evidence for bacterial colonization of a drinking water distribution system. Appl. Environ. Microbiol. 41: 274–287

    Google Scholar 

  • Rittman BE (1989) Detachment from biofilms. In: Characklis WG & Wilderer PA (Eds) Structure and Function of Biofilms (pp 49–58). John Wiley and Sons, New York

    Google Scholar 

  • Rittmann BE & Manem JA (1992) Development and experimental evaluation of a steady-state multispecies biofilm model. Biotechnol. Bioeng. 39: 914–922

    Google Scholar 

  • Rogers J, Dowsett AB, Dennis PJ, Lee JV & Keevil CW (1994) Influence of plumbing materials on bio lm formation and growth of Legionella pneumophilla in potable water systems. Appl. Environ. Microbiol. 60: 1842–1851

    Google Scholar 

  • Rompré A, Prévost M, Coallier J & Servais P (1998) Chapter 4. Impact of reducing biodegradable organic matter on xed and suspended biomass in distribution systems. In: LeChevallier MW, Norton CD, Camper A, Morin P, Ellis B, Jones W, Rompré A, Prévost M, Coallier J, Servais P, Holt D, Delanoue A & Colbourne J (Eds) Microbial Impact of Biological Filtration. (pp 57–120). AWWA Res. Found. and Am. Wat. Works Assoc., Denver, Colorado, USA. Report no. 90743

    Google Scholar 

  • Rompré A, Prévost M, Coallier J, Brisebois P & Lavoie J (2000) Impacts of implementing a corrosion control strategy on biofilm growth. Water Sci. Technol. 41(4 –5): 287–294

    Google Scholar 

  • Roszak DB & Colwell RR (1987) Survival strategies of bacteria in the natural environment. Microbiol. Rev. 51: 365–379

    Google Scholar 

  • Saby S (1999) Résistance à l'hypochlorite de sodium des bactéries dans les eaux potables. Ph.D. Thesis, University Henri Poincaré/Nancy 1, Nancy, France

  • Saby S, Sibille I, Mathieu L, Paquin JL & Block JC (1997) Influence of water chlorination on the counting of bacteria with DAPI (4′,6-diamidino-2-phenylindole). Appl. Environ. Microbiol. 63: 1564–1569

    Google Scholar 

  • Saby S, Leroy P & Block JC (1999) E. coli resistance to chlorine and glutathione synthesis in response to high oxygenation and starvation. Appl. Environ. Microbiol. 65: 5600–5603

    Google Scholar 

  • Saby S, Mathieu L & Block JC (2000) Rapid assessment of the efficiency of drinking water chlorination. Conference World Congress IWA, Paris, July 2000

    Google Scholar 

  • Sasaki K, Tajiri Y, Sata M, Fujii Y, Matsubara F, Zhao M, Shimizu S, Toyonaga A & Tanikawa K (1999) Helicobacter pylori in the natural environment. Scand. J. Infec. Dis. 31: 275–279

    Google Scholar 

  • Sathasivan A & Ohgaki S (1999) Application of new bacterial regrowth potential method for water distribution system –A clear evidence of phosphorus limitation. Water Res. 33(1): 137–144

    Google Scholar 

  • Sarin P, Snoeyink VL, Lytle DA & Kriven WM (2004) Iron corrosion scales:model for scale growth,iron release,and colored water formation. J. Environm. Engng-ASCE. 130: 364–373

    Google Scholar 

  • Sathasivan A, Ohgaki S, Yamamoto K & Kamiko N (1997) Role of inorganic phosphorus in controlling regrowth in water distribution system. Water Sci. Technol. 35: 37–44

    Google Scholar 

  • Schmeisser C, Stöckigt C, Raasch C, Wingender J, Timmis KN, Wenderoth DF, Flemming H-C, Liesegang H, Schmitz RA, Jaeger K-E & Streit WR (2003) Metagenome survey of biofilms in drinking-water networks. Appl. Environ. Microbiol. 69(12): 7298–7309

    Google Scholar 

  • Schreiber H & Schoenen D (1994) Chemical bacteriological and biological examination and evaluation of sediments from drinking water reservoirs –results from the rst sampling phase. Zbl. Hyg. 196: 153–169

    Google Scholar 

  • Schulze-Robbecke R, Janning B & Fischeder R (1992) Occurrence of mycobacteria in biofilm samples. Tubercle Lung Dis. 73: 141–144

    Google Scholar 

  • Schwartz T, Hoffman S & Obst U (2000) Formation and bacterial composition of young,natural biofilms obtained from public bank-ltered drinking water systems. Water Res. 32: 2787–2797

    Google Scholar 

  • Servais P, Billen G, Laurent P, Lévi Y & Randon G (1992a) Studies of BDOC and bacterial dynamics in drinking water distribution system of the Northern Parisian suburb. Sci. Eau. 5: 69–89

    Google Scholar 

  • Servais P, Laurent P, Billen G & Lévi Y (1992b) Etude de la colonisation bactérienne des réseaux de distribution. Techn. Sci. Méth. Eau 6: 321–326

    Google Scholar 

  • Servais P, Laurent P & Randon G (1992c) Mesure de la biomasse et de l'activitébactérienne dans l'eau de distribution. Sci. Eau 5: 473–488

    Google Scholar 

  • Sharma S, Sachdeva P & Virdi JS (2003) Emerging water-borne pathogens. Appl. Microbiol. Biotechnol. 61: 424–428

    Google Scholar 

  • Shiba U, Tsutsumi K, Yano H, Ihara Y, Kameda A, Tanaka K, Takahashi H, Munekata M, Rao NN & Kornberg A (1997) Inorganic polyphosphate and the induction of rpoS expression. Proc. Natl. Acad. Sci. USA. 94: 11210–11215

    Google Scholar 

  • Sibille I, Mathieu L, Paquin JL, Gatel D & Block JC (1997) Microbial characteristics of a distribution system fed with nano ltered drinking water. Water Res. 31: 2318–2326

    Google Scholar 

  • Sibille I, Sime-Ngando T, Mathieu L & Block J-C (1998) Protozoan bacterivory and Escherichia coli survival in drinking water distribution systems. Appl. Environ.Microbiol. 64(1): 197–202

    Google Scholar 

  • Sly LP, Hodgkinson MC & Arunpairojana V (1988) Effect of water velocity on the early development of manganese-depositing bio lm in a drinking-water distribution system. FEMS Microbiol. Ecol. 53: 175–186

    Google Scholar 

  • Smith SE, Bisset A, Colbourne JS, Holt D & Lloyd BJ (1997) The occurrence and significance of particles and deposits in a drinking water distribution system. J. New England Water Works. Assoc., 111(2): 135–150

    Google Scholar 

  • Steinert M, Birkness K, White E, Fields B & Quinn F (1998) Mycobacterium avium bacilli grow saprozoically in coculture with Acanthamaeba polyphaga and survive within cyst walls. Appl. Environ. Microbiol. 64: 2256–2261

    Google Scholar 

  • Stewart PS & Raquepas JB (1995) Implications of reactiondiflusion theory for the disinfection of microbial biofilms by reactive antimicrobial agents. Water Res. 50: 3099–3104

    Google Scholar 

  • Stewart PS, Reyton BM, Drury WJ & Murga R (1993) Quantitative observation of heterogeneities in Pseudomonas aeruginosa biofilms. Appl. Environ. Microbiol. 59: 324–329

    Google Scholar 

  • Stolzenbach KD (1989) Particle transport and attachment. In: Characklis WG & Wilderes PA (Eds) Structure and Function of Biofilms, (pp 33–47). Dahlem Workshop, Berlin, John Wiley Publishers, Chichester, UK

    Google Scholar 

  • Stoodley P, De Beer D & Lewandowski Z (1994) Liquid flow in biofilm systems. Appl. Environ. Microbiol. 60: 2711–2716

    Google Scholar 

  • Storz G & Zheng M (2000) Oxidative stress. In: Storz G & Hengge-Aronis R (Eds) Bacterial Stress Responses (pp 47–59). ASM Press, Washington, DC

    Google Scholar 

  • Tuovinen OH, Button KS, Vuorinen A, Carlson L, Mair DM & Yutt LA (1980) Bacterial, chemical, and mineralogical characterisation of tubercules in distribution pipelines. J. Amer. Wat. Wks Assoc. 72: 626–635

    Google Scholar 

  • Van der Kooij D (1999) Potential for bio lm development in drinking water distribution systems. J. Appl. Microbiol. Symposium Suppl. 85: 39S–44S

    Google Scholar 

  • Van der Kooij D & Veenendaal HR (1993) Assessment of the biofilm formation characteristics of drinking water. In: Pro ceedings of the American Water Works Association Water Quality Technology Conference, Toronto Ontario, 1992 (pp 1099–1110). American Water Works Association, Toronto

    Google Scholar 

  • Van der Kooij D, Veenendaal HR, Baars-Lorist C, Van der Klift DW & Drost YC (1995) Biofilm formation on surfaces of glass and teflon exposed to treated water. Water Res. 7: 1655–1662

    Google Scholar 

  • Van der Wende E, Characklis WG & Smith DB (1989) Biofilms and bacterial drinking water quality. Water Res. 23: 1313–132

    Google Scholar 

  • Vess RW, Anderson RL, Carr JH, Bond WW & Favero MS (1993) The colonisation of solid PVC surfaces and the acquisition of resistance to germicides by water microorganisms. J. Appl.Bacteriol. 74: 215–221

    Google Scholar 

  • Victoreen HT (1984). The role of rust in coliform regrowth. In: Proceeding of the Wat. Quality Technol. Conf. of Amer. Water Wks Assoc., Denver, Co, USA (pp 253–264)

    Google Scholar 

  • Volk CJ & LeChevallier MW (1999) Impacts of the reduction of nutrients levels on bacterial water quality in distribution systems. Appl. Environ. Microbiol. 65: 4957–4966

    Google Scholar 

  • Von Reyn CF, Maslow JN, Barber TW, Falkinham JO & Arbeit RD (1994) Persistent colonisation of potable water as a source of Mycobacterium avium infection in AIDS. Lancet 343: 1137

    Google Scholar 

  • Wadowsky RM & Yee RB (1983) Satellite growth of Legionella pneumophila with an environmental isolate of Flavobacterium breve. Appl. Environ. Microbiol. 46: 1447–1449

    Google Scholar 

  • Williams MM & Braun-Howland EB (2003) Growth of Escherichia coli in model distribution system biofilms exposed to hypochlorous acid or monochloramine. Appl. Environ. Microbiol. 65(9): 5463–5271

    Google Scholar 

  • Zacheus OM, Ilvanainen EI, Nissinen TK, Lethola MJ & Martikainen PJ (2000) Bacterial bio lm formation on polyvinyl chloride, polyethylene and stainless steel exposed to ozonated water. Water Res. 34: 63–70

    Google Scholar 

  • Zacheus OM, Lethola MJ, Korhonen LK & Martikainen PJ (2001) Soft deposits, the key site for microbial growth in drinking water distribution networks. Water Res. 35(7): 1757–1765

    Google Scholar 

  • Zhang TC & Bishop PL, (1994) Density, porosity, and pore structure of biofilms. Water Res. 28: 2267–2277

    Google Scholar 

  • Zheng M, Aslund F & Storz G (1998) Activation of the OxyR transcription factor by reversible disul de bond formation. Science 279: 1718–1721

    Google Scholar 

  • Zmirou D, Rey S, Courtois X, Potelon LJ, Blatier JF, Chevalier P, Boudot J & Ferley JP (1995) Residual health risk after simple chlorine treatment of drinking water in small community systems. Eur. J. Publ. Health 5: 75–81

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Batté, M., Appenzeller, B., Grandjean, D. et al. Biofilms in Drinking Water Distribution Systems. Re/Views in Environmental Science and Bio/Technology 2, 147–168 (2003). https://doi.org/10.1023/B:RESB.0000040456.71537.29

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:RESB.0000040456.71537.29

Navigation