Recent Findings on the Phytoremediation of Soils Contaminated with Environmentally Toxic Heavy Metals and Metalloids Such as Zinc, Cadmium, Lead, and Arsenic

  • I. Alkorta
  • J. Hernández-Allica
  • J.M. Becerril
  • I. Amezaga
  • I. Albizu
  • C. Garbisu
Article

Abstract

Due to their immutable nature, metals are a group of pollutants of much concern. As a result of human activities such as mining and smelting of metalliferous ores, electroplating, gas exhaust, energy and fuel production, fertilizer and pesticide application, etc., metal pollution has become one of the most serious environmental problems today. Phytoremediation, an emerging cost-effective, non-intrusive, and aesthetically pleasing technology, that uses the remarkable ability of plants to concentrate elements and compounds from the environment and to metabolize various molecules in their tissues, appears very promising for the removal of pollutants from the environment. Within this field of phytoremediation, the utilization of plants to transport and concentrate metals from the soil into the harvestable parts of roots and above-ground shoots, i.e., phytoextraction, may be, at present, approaching commercialization. Improvement of the capacity of plants to tolerate and accumulate metals by genetic engineering should open up new possibilities for phytoremediation. The lack of understanding pertaining to metal uptake and translocation mechanisms, enhancement amendments, and external effects of phytoremediation is hindering its full scale application. Due to its great potential as a viable alternative to traditional contaminated land remediation methods, phytoremediation is currently an exciting area of active research.

metalloids metals phytochelatins phytoextraction phytoremediation transgenic plants 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ager FJ, Ynsa MD, Domínguez-Solís JR, Gotor C, Respaldiza MA & Romero LC (2002) Cadmium localization and quanti cation in the plant A. thaliana using micro-PIXE. Nuclear Instr. Methods in Phy. Res. Section B. Beam Interactions with Mat. and Atoms 189: 494–498Google Scholar
  2. Alkorta I & Garbisu C (2001) Phytoremediation of organic contaminants. Bioresource Technol. 79: 273–276Google Scholar
  3. Arazi T, Sunkar R, Kaplan B & Fromm H (1999) A tobacco plasma membrane calmodulin-binding transporter confers Ni2+ tolerance and Pb2+ hypersensitivity in transgenic plants. Plant J. 20: 171–182Google Scholar
  4. Assunçço AGL, Martins PD, De Folter S, Vooijs R, Schat H & Aarts MGM (2001) Elevated expression of metal transporter genes in three accessions of the metal hyperaccumulator Thlaspi caerulescens. Plant Cell Environ. 24: 217–226Google Scholar
  5. Baghour M, Moreno DA, Hernçndez J, Castilla N & Romero L (2001) Influence of root temperature on phytoaccumulation of As, Ag, Cr, and Sb in potato plants (Solanum tuberosum L. var. Spunta). J. Environ. Sci. Health Part A Tox. Hazard Subst. Environ. Eng. 36: 1389–1401Google Scholar
  6. Baker AJM (1981) Accumulators and excluders-Strategies in the response of plants toheavy metals. J. Plant Nutr. 3: 643–654Google Scholar
  7. Baker AJM & Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metallic elements. A review of their distribution, ecology and phytochemistry. Biorecovery 1: 81–126Google Scholar
  8. Baker AJM & Whiting SN (2002) In search of the Holy Grail-a further step in understanding metal hyperaccumu-lation? New Phytol. 155: 1–7Google Scholar
  9. Baker AJM, McGrath SP, Reeves RD & Smith JAC (2000) Metal hyperaccumulator plants: A review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils. In: Terry N, Bañuelos G & Vangronsveld J (Eds), Phytoremediation of contaminated soil and water (pp 85–107). Lewis Publisher, Boca Raton, FL, USAGoogle Scholar
  10. Baker AJM, McGrath SP, Sidoli CMD & Reeves RD (1994a) The possibility of in situ heavy metal decontamination of polluted soils using crops of metal-accumulating plants. Resour. Conser. Recycl. 11: 41–49Google Scholar
  11. Baker AJM, Reeves RD & Hajar ASM (1994b) Heavy metal accumulation and tolerance in British populations of the metallophyte Thlaspi caerulescens J. & C. Presl (Brassicaceae). New Phytol. 127: 61–68Google Scholar
  12. Bennet LE, Burkhead JL, Hale KL, Terry N, Pilon M & Pilon-Smits EA (2003) Analysis of transgenic Indian mustard plants for phytoremediation of metal-contaminated mine tailings. J. Environ. Qual. 32: 432–440Google Scholar
  13. Bert V, Macnair MR, de Laguerie P, Saumitou-Laprade P & Petit D (2000) Zinc tolerance and accumulation in metallic-olous and nonmetallicolous populations of Arabidopsis halleri (Brassicaceae). New Phytol. 146: 225–233Google Scholar
  14. Bizily SP, Kim T, Kandasamy MK & Meagher RB (2003) Subcellular targeting of methylmercury lyase enhances its speci c activity for organic mercury detoxi cation in plants. Plant Physiol. 131: 463–471Google Scholar
  15. Bolan NS, Adriano DC, Mani PA & Duraisamy A (2003a) Immobilization and phytoavailability of cadmium in variable charge soils. II. E. ect of lime addition. Plant Soil 251: 187–198Google Scholar
  16. Bolan NS, Adriano DC & Naidu R (2003b) Role of phosphorus in (im) mobilization and bioavailability of heavy metals in the soil-plant system. Rev. Environ. Contam. Toxicol. 177: 1–44Google Scholar
  17. Boominathan R & Doran PM (2003a) Organic acid complexation, heavy metal distribution and the e. ects of ATPase inhibition in hairy roots of hyperaccumulator plant species. J. Biotechnol. 101: 131–146Google Scholar
  18. Boominathan R & Doran PM (2003b) Cadmium tolerance and antioxidative defenses in hairy roots of the cadmium hyper-accumulator, Thlaspi caerulescens. Biotechnol. Bioengineer. 20: 158–167Google Scholar
  19. Boyajian GE & Carreira LH (1997) Phytoremediation: a clean transition from laboratory to marketplace. Nat. Biotechnol. 15: 127–128Google Scholar
  20. Brennan MA & Shelley ML (1999) A model of the uptake, translocation, and accumulation of lead (Pb) by maize for the purpose of phytoextraction. Ecol. Engineer. 12: 271–297Google Scholar
  21. Brewer EP, Saunders JA, Angle JS, Chaney RL & McIntosh MS (1999) Somatic hybridization between the zinc accumu-lator Thlaspi caer ulescens and Brassica napous. Theore. Appl. Gen. 9: 761–771Google Scholar
  22. Briat JF & Lebrun M (1999) Plant responses to metal toxicity. Comptes Rendus de l'Académie des Sciences-Series III-Sciences de la Vie 322: 43–54Google Scholar
  23. Brooks RR (1988) (Ed) Plants that Hyperaccumulate Heavy Metals. CAB International, Oxon, UK, 356 ppGoogle Scholar
  24. Brooks RR, Lee J, Reeves RD & Jaffré T (1977) Detection of nickeliferous rocks by analysis of herbarium species of indicator plants. J. Geochem. Explor. 7: 49–57Google Scholar
  25. Brown SL, Chaney RL, Angle JS & Baker AJ (1995) Zinc and cadmium uptake by hyperaccumulator Thlaspi caerulescens grown in nutrient solution. Soil Sci. Soc. Am. J. 59: 125–133Google Scholar
  26. Chaney RL, Li YM, Brown SL, Homer FA, Malik M, Angle JS, Baker AJM, Reeves RD & Chin M (2000) Improving metal hyperaccumulator wild plant to commercial phytoex-traction systems: Approaches and progress. In: Terry N, Bañuelos G & Vangronsveld J (Eds), Phytoremediation of contaminated soil and water (pp 129–158). Lewis Publisher, Boca Raton, FL, USAGoogle Scholar
  27. Chaney RL, Malik M, Li YM, Brown SL, Brewer EP, Angle JS & Baker AJ (1997) Phytoremediation of metals. Curr. Opin. Biotechnol. 8: 279–284Google Scholar
  28. Chaudhry TM, Hayes WJ, Khan AG & Khoo CS (1998) Phytoremediation-Focusing on accumulator plants that remediate metal-contaminated soils. Australasian J. Ecotoxicol. 4: 37–51Google Scholar
  29. Chen B, Christie P & Li X (2001) A modi ed glass bead compartment cultivation system for studies on nutrient and trace metal uptake by arbuscular mycorrhiza. Chemosphere 42: 185–192Google Scholar
  30. Chen HM, Zheng CR, Tu C & Shen ZG (2000) Chemical methods and phytoremediation of soil contaminated with heavy metals. Chemosphere 41: 229–234Google Scholar
  31. Chen YX, He YF, Yang Y, Yu YL, Zheng SJ, Tian GM, Luo YM & Wong MH (2003) Effect of cadmium on nodulation and N2-xation of soybean in contaminated soils. Chemosphere 50: 781–787Google Scholar
  32. Clemens S (2001) Developing tools for phytoremediation: towards a molecular understanding of plant metal tolerance and accumulation. Int. J. Occup. Med. Environ. Health 14: 235–239Google Scholar
  33. Clemens S, Palmgren MG & Krämer U (2002) A long way ahead: understanding and engineering plant metal accumulation. Trends Plant Sci. 7: 309–315Google Scholar
  34. Cobbett C, May MJ, Howden R & Rolls B (1998) The glutathione-de cient, cadmium-sensitive mutant, cad2-1, of Arabidopsis thaliana is de cient in c glutamilcysteine synthetase. Plant J. 16: 73–78Google Scholar
  35. Cobbett C & Goldsbrough P (2002) Phytochelatins and metallothioneins: Roles in heavy metal detoxi cation and homeostasis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 53: 159–182Google Scholar
  36. Collins YE & Stotzky G (1989) Factors a. ecting the toxicity of heavy metals to microbes. In: Beveridge TJ & Doyle RJ (Eds), Metal Ions and Bacteria (pp 31–90). Wiley, Toronto, CanadaGoogle Scholar
  37. Cunningham SD & Ow DW (1996) Promises and prospects of phytoremediation. Plant Physiol. 110: 715–719Google Scholar
  38. Dahmani-Muller H, van Oort F, Gélie B & Balabane M (2000) Strategies of heavy metal uptake by three plant species growing near a metal smelter. Environ. Pollut. 109: 231–238Google Scholar
  39. Dahmani-Muller H, van Oort F & Balabane M (2001) Metal extraction by Arabidopsis halleri grown on an unpolluted soil amended with various metal-bearing solids: a pot experiment. Environ. Pollut. 114: 77–84Google Scholar
  40. De Knecht JA, van Dillen M, Koevoets PLM, Schat H, Verkleij JAC & Ernst WHO (1994) Phytochelatins in cadmium-sensitive and cadmium-tolerant Silene vulgaris. Plant Physiol. 104: 255–261Google Scholar
  41. Delhaize E. A (1996) A metal-accumulator mutant of Arabidopsis thaliana. Plant Physiol. 111: 849–855Google Scholar
  42. Delorme TA, Gagliardi JV, Angle JS & Chaney RL (2001) Influence of the zinc hyperaccumulator Thlaspi caerulescens J. & C. Presl. and the nonmetal accumulator Trifolium pratense L. on soil microbial populations. Can. J. Microbiol. 47: 773–776Google Scholar
  43. Dhankher OP, Li Y, Rosen BP, Shi J, Salt D, Seneco. JF, Sashti NA & Meagher RB (2002) Engineering tolerance and hyperaccumulation of arsenic in plants by combining arse-nate reductase and c glutamylcysteine synthetase expression. Nat. Biotechnol. 20: 1140–1145Google Scholar
  44. Diels N, van der Lelie D & Bastiaens L (2002) New developments in treatment of heavy metal contaminated soils. Re/Views in Environ. Sci. & Bio/Technol. 1: 75–82Google Scholar
  45. Doucleff M & Terry N (2002) Pumping out the arsenic. Nat. Biotechnol. 20: 1094–1095Google Scholar
  46. Dushenkov S, Skarzhinskaya M, Glimelius K, Gleba D & Raskin I (2002) Bioengineering of a phytoremediation plant by means of somatic hybridization. Int. J. Phytoremediation 4: 117–126Google Scholar
  47. Ebbs S, Lau I, Ahner B & Kochian L (2002) Phytochelatin synthesis is not responsible for Cd tolerance in the Zn/Cd hyperaccumulator Thlaspi caerulescens (J. & C. Presl). Planta 214: 635–640Google Scholar
  48. Elmayan T & Tepfer M (1994) Synthesis of a bifunctional metallothionein/b-glucuronidase fusion protein in transgenic tobacco plants as a means of reducing leaf cadmium levels. Plant J. 6: 433–440Google Scholar
  49. Entry JA, Rygiewicz PT, Watrud LS & Donnelly PK (2002) Influence of adverse soil conditions on the formation and function of arbuscular mycorrhizas. Adv. Environ. Res. 7: 123–138Google Scholar
  50. Evans KM, Gatehouse JA, Lindsay WP, Shi J, Tommey AM & Robinson NJ (1992) Expression of the pea metallothionein-like gene PsMTA in Escherichia coli and Arabidopsis thaliana and analysis of trace metal ion accumulation: Implications for PsMTA function. Plant Mol. Biol. 20: 1019–1028Google Scholar
  51. Evans LD (2002) The dirt on phytoremediation. J. Soil & Water Conservation 57: 12A–15AGoogle Scholar
  52. Francesconi K, Visoottiviseth P, Sridokchan W & Goessler W (2002) Arsenic species in an arsenic hyperaccumulating fern, Pityrogramma calomelanos: a potential phytoremediator of arsenic-contaminated soils. Sci. Total Environ. 284: 27–35Google Scholar
  53. Gabbrielli R, Pandolfini T, Vergnano O & Palandri MR (1990) Comparison of two serpentine species with different nickel tolerance strategies. Plant Soil. 122: 271–277Google Scholar
  54. Garbisu C & Alkorta I (1997) Bioremediation: principles and future. J. Clean Technol. Environ. Toxic. & Occup. Med. 6: 351–366Google Scholar
  55. Garbisu C & Alkorta I (2001) Phytoextraction: a cost-e. ective plant-based technology for the removal of metals from the environment. Bioresource Technol. 77: 229–236Google Scholar
  56. Garbisu C & Alkorta I (2003) Basic concepts on heavy metal soil bioremediation. Eur. J. Min. Proc. & Environ. Protect. 3: 58–66Google Scholar
  57. Garbisu C, Hernández-Allica J, Barrutia O, Alkorta I & Becerril JM (2002) Phytoremediation: A technology using green plants to remove contaminants from polluted areas. Rev. Environ. Health 17: 75–90Google Scholar
  58. Gisbert C, Ros R, de Haro A, Walker DJ, Bernal MP, Serrano R & Navarro-Avino J (2003) A plant genetically modi ed that accumulates Pb is especially promising for phytoremediation. Biochem. Biophys. Res. Commun. 303: 440–445Google Scholar
  59. Gleba D, Borisjuk NV, Borisjuk LG, Kneer R, Poulev A, Skarzhinskaya M, Dushenkov S, Logendra S, Gleba YY & Raskin I (1999) Use of plant roots for phytoremediation and molecular farming. Proc. Natl. Acad. Sci. USA 96: 5973–5977Google Scholar
  60. Gong JM, Lee DA & Schroeder JI (2003) Long-distance root-to-shoot transport of phytochelatins and cadmium in Arabidopsis. 2003 Proc. Natl. Acad. Sci. USA 100: 10118–10123Google Scholar
  61. Grichko VP, Filby B & Glick BR (2000) Increased ability of transgenic plants expressing the bacterial enzyme ACC deaminase to accumulate Cd, Co, Cu, Ni, Pb, and Zn. J. Biotechnol. 81: 45–53Google Scholar
  62. Guerinot ML (2000) The ZIP family of metal transporters. Biochim. Biophys. Acta (BBA)-Biomembranes 1465: 190–198Google Scholar
  63. Hasegawa I, Terada E, Sunairi M, Wakita H, Shinmachi F & Noguchi A (1997) Genetic improvement of heavy metal tolerance in plants by transfer of the yeast metallothionein gene (CUP1). Plant Soil 196: 277–281Google Scholar
  64. Hattori J, Labbe H & Miki BL (1994) Construction and expression of a metallothionein-beta-glucuronidase gene fusion. Genome 37: 508–512Google Scholar
  65. Heaton ACP, Rugh CL, Wang N & Meagher RB (1998) Phytoremediation of mercury-and methylmercury-polluted soils using genetically engineered plants. J. Soil Contam. 7: 497–509Google Scholar
  66. Hill KA, Lion LW & Ahner BA (2002) Reduced Cd accumu-lation in Zea mays: a protective role for phytosiderophores? Environ. Sci. Technol. 36: 5363–5368Google Scholar
  67. Hirschi KD, Korenkov VD, Wilganowski NL & Wagner GJ (2000) Expression of Arabidopsis CAX2in tobacco. Altered metal accumulation and increased manganese tolerance. Plant Physiol. 124: 125–133Google Scholar
  68. Homer FA, Morrison RS, Brooks RR, Clement J & Reeves RD (1991) Comparative studies of nickel, cobalt, and copper uptake by some nickel hyperaccumulators of the genus Alyssum. Plant Soil. 138: 195–205Google Scholar
  69. Iannelli MA, Pietrini F, Fiore L, Petrilli L & Massacci A (2002) Antioxidant response to cadmium in Phragmites australis plants. Plant Physiol. Biochem. 40: 977–982Google Scholar
  70. Jauert P, Schumacher TE, Boe A & Reese RN (2002) Rhizosphere acidification and cadmium uptake by strawberry clover. J. Environ. Qual. 31: 627–633Google Scholar
  71. Kamnev AA & van der Lelie D (2000) Chemical and biological parameters as tools to evaluate and improve heavy metal phytoremediation. Biosci. Rep. 20: 239–258Google Scholar
  72. Kärenlampi S, Schat H, Vangronsveld J, Verkleij JAC, van der Lelie D, Mergeay M & Tervahauta AI (2000) Genetic engineering in the improvement of plants for phytoremediation of metal polluted soils. Environ. Pollut. 107: 225–231Google Scholar
  73. Koppolu L & Clements LD (2003) Pyrolysis as a technique for separating heavy metals from hyperaccumulators. Part I: Preparation of synthetic hyperaccumulator biomass. Biomass & Bioenergy 24: 69–79Google Scholar
  74. Krämer U & Chardonnens AN (2001) The use of transgenic plants in the bioremediation of soils contaminated with trace elements. Appl. Microbiol. Biotechnol. 55: 661–672Google Scholar
  75. Krämer U (2000) Cadmium for all meals-plants with an unusual appetite. New Phytol. 145: 1–5Google Scholar
  76. Krämer U, Cotter-Howells JD, Charnock JM, Baker AJM & Smith JAC (1996) Free histidine as a metal chelator in plants that hyperaccumulate nickel. Nature 379: 635–638Google Scholar
  77. Lahner B, Gong J, Mahmoudian M, Smith EL, Abid KB, Rogers EE, Guerinot ML, Harper JF, Ward JM, McIntyre L, Schroeder JI & Salt DE (2003) Genomic scale pro ling of nutrient and trace elements in Arabidopsis thaliana. Nat. Biotechnol. 21: 1215–1221Google Scholar
  78. Lasat MM, Baker AJM & Kochian LV (1998) Altered Zn compartmentation in the root symplasm and stimulated Zn absorption into the leaf as mechanism involved in Zn hyperaccumulation in Thlaspi caerulescens. Plant Physiol. 118: 875–883Google Scholar
  79. Lasat MM (2002) Phytoextraction of toxic metals: a review of biological mechanisms. J. Environ. Qual. 31: 109–120Google Scholar
  80. Lehoczky E, Marth P, Szabados I, Palkovics M & Lukács P (2000) Influence of soil factors on the accumulation of cadmium by lettuce. Commun. Soil Sci. Plant Anal. 31: 2425–2431Google Scholar
  81. Lehoczky E, SzabóL & Horváth S (1998) Cadmium uptake by plants in different soils. Commun. Soil Sci. Plant Anal. 29: 1903–1912Google Scholar
  82. Linger P, Müssig J, Fischer H & Kobert J (2002) Industrial hemp (Cannabis sativa L. ) growing on heavy metal contam-inated soil: bre quality and phytoremediation potential. Industr. Crops Protect. 16: 33–42Google Scholar
  83. Liu D, Jiang W, Liu C, Xin C & Hou W (2000) Uptake and accumulation of lead by roots, hypocotyls and shoots of Indian mustard (Brassica juncea L. ). Bioresource Technol. 71: 273–277Google Scholar
  84. Lombi E, Tearall KL, Howarth JR, Zhao FJ, Hawkesford MJ & McGrath SP (2002) Influence of iron status on cadmium and zinc uptake by different ecotypes of the hyperaccumulator Thlaspi caerulescens. Plant Physiol. 128: 1359–1367Google Scholar
  85. Lombi E, Zhao FJ, Dunham SJ & McGrath SP (2000) Cadmium accumulation in populations of Thlaspi caerulescens and Thlaspi geosingense. New Phytol. 145: 11–20Google Scholar
  86. Long XX, Yang XE, Ye ZQ, Ni WZ & Shi WY (2002) Differences of uptake and accumulation of zinc in four species of Sedum. Acta Botanica Sinica 44: 152–157Google Scholar
  87. Luo YM, Christie P & Baker AJM (2000) Soil solution Zn and pH dynamics in non-rhizosphere soil and in the rhizosphere of Thlaspi caerulescens grown in a Zn/Cd-contaminated soil. Chemosphere 41: 161–164Google Scholar
  88. Ma LQ, Komar KM, Tu C, Zhang W, Cai Y & Kennelley ED (2001) A fern that hyperaccumulates arsenic. Nature 409: 579Google Scholar
  89. Ma M, Lau PS, Jia YT, Tsang WK, Lam SKS, Tam NFY & Wong YS (2003) The isolation and characterization of Type 1 metallothionein (MT) cDNA from a heavy-metal-tolerant plant, Festuca rubra cv. Merlin. Plant Sci. 164: 51–60Google Scholar
  90. Macnair MR (2002) Within-and between-population genetic variation for Zn accumulation in Arabidopsis halleri. New Phytol. 155: 59–66Google Scholar
  91. Macnair MR, Bert V, Huitson SB, Saumitou-Laprade P & Petit D (1999) Zinc tolerance and hyperaccumulation are genetically independent characters. Proc. Royal Soc. London B 266: 2175–2179Google Scholar
  92. Madejon P, Murillo JM, Maranon T, Cabrera F & Soriano MA (2003) Trace element and nutrient accumulation in sun. ower plants two years after the Aznalcollar mine spill. Sci. Total Environ. 20: 239–257Google Scholar
  93. Maser P, Thomine S, Schroeder JI, Ward JM, Hirschi K, Sze H, Talke IN, Amtmann A, Maathuis FJ, Sanders D, Harper JF, Tchieu J, Gribskov M, Persans MW, Salt DE, Kim SA & Guerinot ML (2001) Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiol. 126: 1646–1667Google Scholar
  94. McGrath SP, Shen ZG & Zhao FJ (1997) Heavy metal uptake and chemical changes in the rhizosphere of Thlaspi caerulescens and Thlaspi ochroleucum grown in contaminated soils. Plant Soil 188: 153–159Google Scholar
  95. McGrath SP, Lombi E & Zhao FJ (2001) What's new about cadmium hyperaccumulation? New Phytol. 149: 2–3Google Scholar
  96. McGrath SP, Zhao FJ & Lombi E (2002) Phytoremediation of metals, metalloids, and radionuclides. Adv. Agronomy 75: 1–56Google Scholar
  97. McGrath SP & Zhao FJ (2003) Phytoextraction of metals and metalloids. Curr. Opin. Biotechnol. 14: 277–282Google Scholar
  98. McIntyre T (2003) Phytoremediation of heavy metals from soils. Adv. Biochem. Eng. Biotechnol. 78: 97–123Google Scholar
  99. Meagher RB (2000) Phytoremediation of toxic elemental and organic pollutants. Curr. Opin. Plant Biol. 3: 153–162Google Scholar
  100. Mejare M & Bulow L (2001) Metal-binding proteins and peptides in bioremediation and phytoremediation of heavy metals. Trends Biotechnol. 19: 67–73Google Scholar
  101. Mengoni A, Gonnelli C, Galardi F, Gabbrielli R & Bazzicalupo M (2000) Genetic diversity and heavy metal tolerance in populations of Silene paradoxa L. (Caryophyllaceae): a random ampli ed polymorphic DNA analysis. Mol. Ecol. 9: 1319–1324Google Scholar
  102. Misra S & Gedamu L (1989) Heavy metal tolerance transgenic Brassica napus L. and Nicotiana tabacum L. plants. Theor. Appl. Gen. 78: 161–168Google Scholar
  103. Morgan AJ, Evans M, Winters C, Gane M & Davies MS (2002) Assaying the e. ects of chemical ameliorants with earthworms and plants exposed to a heavily polluted metalliferous soil. Eur. J. Soil Biol. 38: 323–327Google Scholar
  104. Navari-Izzo F & Quartacci MF (2001) Phytoremediation of metals. Tolerance mechanisms against oxidative stress. Minerva Biotec. 13: 73–83Google Scholar
  105. Nedelkoska TV & Doran PM (2000) Hyperaccumulation of cadmium by hairy roots of Thlaspi caerulescens. Biotechnol. Bioeng. 67: 607–615Google Scholar
  106. O'Connor CS, Leppi NW, Edwards R & Sunderland G (2003) The combined use of electrokinetic remediation and phyto-remediation to decontaminate metal-polluted soils: a labora-tory-scale feasibility study. Environ. Monit. Assess. 84: 141–158Google Scholar
  107. Oremland RS & Stolz JF (2003) The ecology of arsenic. Science 300: 939–944Google Scholar
  108. Pawlowska TE, Chaney RL, Chin M& Charvat I (2000) Effects of metal phytoextraction practices on the indigenous com-munity of arbuscular mycorrhizal fungi at a metal-contam-inated land ll. Appl. Environ. Microbiol. 66: 2526–2530Google Scholar
  109. Pence NS, Larsen PB, Ebbs SD, Letham DL, Lasat MM, Garvin DF, Eide D & Kochian LV (2000) The molecular physiology of heavy metal transport in the Zn/Cd hyperac-cumulator Thlaspi caerulescens. Proc. Natl. Acad. Sci. USA 25: 4956–4960Google Scholar
  110. Peralta-Videa JR, Gardea-Torresdey JL, Gómez E, Tiemann KJ, Parsons JG & Carrillo G (2002) Effect of mixed cadmium, copper, nickel and zinc at di. erent pHs upon alfalfa growth and heavy metal uptake. Environ. Pollut. 119: 291–301Google Scholar
  111. Pichtel J, Kuroiwa K & Sawyerr HT (2000) Distribution of Pb, Cd and Ba in soils and plants of two contaminated soils. Environ. Pollut. 110: 171–178Google Scholar
  112. Pickering IJ, Prince RC, George GN, Rauser WE, Wickrama-singhe WA, Watson AA, Dameron CT, Dance IG, Fairlie DP & Salt DE (1999) X-ray absorption spectroscopy of cadmium phytochelatin and model systems. Biochim. Biophys. Acta-Prot. Struct. Mol. Enzymol. 1429: 351–364Google Scholar
  113. Pickering IJ, Prince RC, George GN, Smith RD, George GN & Salt DE (2000) Reduction and coordination of arsenic in Indian mustard. Plant Physiol. 122: 1171–1177Google Scholar
  114. Pilon-Smits E & Pilon M (2000) Breeding mercury-breathing plants for environmental cleanup. Trends Plant Sci. 5: 235–236Google Scholar
  115. Pineros MA, Shaff JE & Kochian LV (1998) Development, characterization, and application of a cadmium-selective microelectrode for the measurement of cadmium fluxes in roots of Thlaspi species and wheat. Plant Physiol. 116: 1393–1401Google Scholar
  116. Pulford ID & Watson C (2003) Phytoremediation of heavy metal-contaminated land by trees-a review. Environ. Int. 29: 529–540Google Scholar
  117. Raskin I (1996) Plant genetic engineering may help with environmental cleanup (commentary). Proc. Natl. Acad. Sci. USA 93: 3164–3166Google Scholar
  118. Raskin I, Smith RD & Salt DE (1997) Phytoremediation of metals: using plants to remove pollutants from the environment. Curr. Opin. Biotechnol. 8: 221–226Google Scholar
  119. Rea PA (2003) Ion genomics. Nat. Biotechnol. 21: 1149–1151Google Scholar
  120. Rengel Z (2000) Ecotypes of Holcus lanatus tolerant to zinc toxicity also tolerate zinc deficiency. Ann. Bot. 86: 1119–1126Google Scholar
  121. Robinson B, Russell C, Hedley M & Clothier B (2001) Cadmium uptake by rhizobacteria: implications for New Zealand pastureland. Agri., Eco. & Environ. 87: 315–321Google Scholar
  122. Rout GR, Samantaray S & Das P (1999) In vitro selection and biochemical characterisation of zinc and manganese adapted callus lines in Brassica spp. Plant Sci. 146: 89–100Google Scholar
  123. Rubinelli P, Siripornadulsil S, Gao-Rubinelli F & Sayre RT (2002) Cadmium-and iron-stress-inducible gene expression in the green alga Chlamydomonas reinhardtii: evidence for H43 protein function in iron assimilation. Planta 215: 1–13Google Scholar
  124. Rugh CL, Gragson GM, Meagher RB & Merkle SA (1998a) Toxic mercury reduction and remediation using transgenic plants with a modi ed bacterial gene. Hort. Science 33: 618–621Google Scholar
  125. Rugh CL, Senecoff JF, Meagher RB & Merkle SA (1998b) Development of transgenic yellow poplar for mercury phytoremediation. Nat. Biotechnol. 16: 925–928Google Scholar
  126. Rugh CL, Wilde HD, Stack NM, Thompson DM, Summers AO & Meagher RB (1996) Mercuric ion reduction and resistance in transgenic Arabidopsis thaliana plants expressing a modi ed bacterial merA gene. Proc. Natl. Acad. Sci. USA 93: 3182–3187Google Scholar
  127. Sahi SV, Bryant NL, Sharma NC & Singh SR (2002) Characterization of a lead hyperaccumulator shrub, Sesbania drummondii. Environ. Sci. Technol. 36: 4676–4680Google Scholar
  128. Salt DE, Blaylock M, Kumar PBAN, Dushenkov V, Ensley BD, Chet I & Raskin I (1995a) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Biotechnol. 13: 468–475Google Scholar
  129. Salt DE, Prince RC, Pickering IJ & Raskin I (1995b) Mechanisms of cadmium mobility and accumulation in Indian mustard. Plant Physiol. 109: 1427–1433Google Scholar
  130. Salt DE, Prince RC, Baker AJM, Raskin I & Pickering IJ (1999) Zinc ligand in the metal hyperaccumulator Thlaspi caerulescens as determined using X-ray absorption spectros-copy. Environ. Sci. Technol. 33: 713–717Google Scholar
  131. Salt DE, Prince RC & Pickering IJ (2002) Chemical speciation of accumulated metals in plants: evidence from X-ray absorption spectroscopy. Microchemical J. 71: 255–259Google Scholar
  132. Salt DE, Smith RD & Raskin I (1998) Phytoremediation. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49: 643–668Google Scholar
  133. Sanitàdi Toppi L & Gabbrielli R (1999) Response to cadmium in higher plants. Environ. Experim. Bot. 41: 105–130Google Scholar
  134. Sauge-Merle S, Cuine S, Carrier P, Lecomte-Pradines C, Luu DT & Peltier G (2003) Enhanced toxic metal accumulation in engineered bacterial cells expressing Arabidopsis thaliana phytochelatin synthase. Appl. Environ. Microbiol. 69: 490–494Google Scholar
  135. Schat H, Llugany M, Vooijs R, Hartley-Whitaker J & Bleeker PM (2002) The role of phytochelatins in constitutive and adaptive heavy metal tolerances in hyperaccumulator and non-hyperaccumulator metallophytes. J. Exp. Bot. 53: 1–12Google Scholar
  136. Schneider T, Haag-Kerwer A, Maetz M, Niecke M, Povh B, Rausch T & Schübler A (1999) Micro-PIXE studies of elemental distribution in Cd-accumulating Brassica juncea L. Nuclear Instr. Methods Phys. Res. Section B: Interaction with Materials and Atoms 158: 329–334Google Scholar
  137. Schutzendubel A & Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J. Exp. Bot. 53: 1351–1365Google Scholar
  138. Schwartz C, Morel JL, Saumier S, Whiting SN & Baker AJM (1999) Root development of the zinc-hyperaccumulator plant Thlaspi caerulescens as affected by metal origin, content and localization in soil. Plant Soil 208: 103–115Google Scholar
  139. Shanks JV & Morgan J (1999) Plant 'hairy root' culture. Curr. Opin. Biotechnol. 10: 151–155Google Scholar
  140. Shann JR (1995) The role of plants and plant/microbial systems in the reduction of exposure. Environ. Health Perspect. 103: 13–15Google Scholar
  141. Shen ZG, Zhao FJ & McGrath SP (1997) Uptake and transport of zinc in the hyperaccumulator Thlaspi caerulescens and the non-hyperaccumulator Thlaspi ochroleucum. Plant Cell Environ. 20: 898–906Google Scholar
  142. Singh OV, Labana S, Pandey G, Budhiraja R & Jain RK (2003) Phytoremediation: an overview of metallic ion decontamination from soil. Appl. Microbiol. Biotechnol. 61: 405–412Google Scholar
  143. Song W-Y, Sohn EJ, Martinoia E, Lee YJ, Yang Y-Y, Jasinski M, Forestier C, Hwang I & Lee Y (2003) Engineering tolerance and accumulation of lead and cadmium in transgenic plants. Nat. Biotechnol. 21: 914–919Google Scholar
  144. Stomp AM, Han KH, Wilbert S, Gordon MP & Cunningham SD (1994) Genetic strategies for enhancing phytoremediation. Ann. NY Acad. Sci. 721: 481–491Google Scholar
  145. Thomas JC, Davies EC, Malick FK, Endreszl C, Williams CR, Abbas M, Petrella S, Swisher K, Perron M, Edwards R, Ostenkowski P, Urbanczyk N, Wiesend WN & Murray KS (2003) Yeast metallothionein in transgenic tobacco promotes copper uptake from contaminated soils. Biotechnol. Prog. 19: 273–280Google Scholar
  146. Tu C, Ma LQ & Bondada B (2002) Arsenic accumulation in the hyperaccumulator Chinese brake and its utilization potential for phytoremediation. J. Environ. Qual. 31: 1671–1675Google Scholar
  147. United States Environmental Protection Agency (1992) Selection of control technologies for remediation of lead battery recycling sites. EPA/540/S-92/011. US Environmental Protection Agency, Office of Emergency and Remedial Response, Washington, DC, USAGoogle Scholar
  148. United States Environmental Protection Agency (2000a) Electrokinetic and phytoremediation in situ treatment of metal-contaminated soil: state-of-the-practice. EPA/542. US Environmental Protection Agency, Office of Solid Waste and Emergency Response Technology Innovation Office, Washington, DC, USAGoogle Scholar
  149. United States Environmental Protection Agency (2000b) Introduction to phytoremediation EPA/600/R-99/107. US Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, USAGoogle Scholar
  150. Vatamaniuk OK, Bucher EA, Ward JT & Rea PA (2002) Worms take the 'phyto' out of 'phytochelatins'. Trends Biotechnol. 20: 61–64Google Scholar
  151. Visoottiviseth P, Francesconi K & Sridokchan W (2002) The potential of Thai indigenous plant species for the phytoreme-diation of arsenic contaminated land. Environ. Pollut. 118: 453–461Google Scholar
  152. Wang QR, Cui YS, Liu XM, Dong YT & Christie P (2003) Soil contamination and plant uptake of heavy metals at polluted sites in China. J. Environ. Sci. Health Part A Tox. Hazard Subst. Environ. Eng. 38: 823–838Google Scholar
  153. Wang QR, Liu XM, Cui YS, Dong YT & Christie P (2002a) Responses of legumes and non-legume crop species to heavy metals in soils with multiple metal contamination. J. Environ. Sci. Health Part A Tox. Hazard Subst. Environ. Eng. 37: 611–621Google Scholar
  154. Wang Z, Shan X & Zhang S (2002b) Comparison between fractionation and bioavailability of trace elements in rhizo-sphere and bulk soils. Chemosphere 46: 1163–1171Google Scholar
  155. Weber O, Scholz RW, Bühlmann R & Grasmück D (2001) Risk perception of heavy metal soil contamination and attitudes toward decontamination strategies. Risk Analysis 21: 967–977Google Scholar
  156. Wenzel WW, Adriano DC, Salt D & Smith R (1999) Phytoremediation: A plant-microbe-based remediation system. In: SSSA (Ed), Bioremediation of Contaminated Soils (pp 457–508) Agronomy Monograph no. 37, SSSA, Madison, WI, USAGoogle Scholar
  157. Whiting SN, Leake JR, McGrath SP & Baker AJM (2000) Positive response to Zn and Cd by roots of the Zn and Cd hyperaccumulator Thlaspi caerulescens. New Phytol. 145: 199–210Google Scholar
  158. Williams LE, Pittman JK & Hall JL (2000) Emerging mechanisms for heavy metal transport in plants. Biochim. Biophys. Acta (BBA)-Biomembranes 1465: 104–126Google Scholar
  159. Wong MH (2003) Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils. Chemosphere 50: 775–780Google Scholar
  160. Zhang W, Cai Y, Tu C & Ma LQ (2002) Arsenic speciation and distribution in an arsenic hyperaccumulating plant. Sci. Total Environ. 300: 167–177Google Scholar
  161. Zhao FJ, Lombi E, Breedon T & McGrath SP (2000) Zinc hyperaccumulation and cellular distribution in Arabidopsis halleri. Plant Cell Environ. 23: 507–514Google Scholar
  162. Zhao FJ, Hamon RE & McLaughlin MJ (2001) Root exudates of the hyperaccumulator Thlaspi caerulescens do not enhance metal mobilization. New Phytol. 151: 613–620Google Scholar
  163. Zhu YL, Pilon-Smits EA, Jouanin L & Terry N (1999a) Overexpression of glutathione synthetase in Indian mustard enhances cadmium accumulation and tolerance. Plant Physiol. 119: 73–80Google Scholar
  164. Zhu YL, Pilon-Smits EA, Tarun AS, Weber SU, Jouanin L & Terry N (1999b) Cadmium tolerance and accumulation in Indian mustard is enhanced by overexpressing gamma-glutamylcysteine synthetase. Plant Physiol. 121: 1169–1178Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • I. Alkorta
    • 1
  • J. Hernández-Allica
    • 2
  • J.M. Becerril
    • 3
  • I. Amezaga
    • 3
  • I. Albizu
    • 2
  • C. Garbisu
    • 2
  1. 1.Unidad de BiofísicaCentro Mixto UPV/EHUSpain
  2. 2.NEIKERBasque Institute of Agricultural Research and DevelopmentSpain
  3. 3.Department of Plant Biology and EcologyUniversity of the Basque CountrySpain

Personalised recommendations