Skip to main content
Log in

Anti-Inflammatory Properties of HDL

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Stein O, Stein Y. Atheroprotective mechanisms of HDL. Atherosclerosis 1999;144(2):285–301.

    Google Scholar 

  2. Witztum JL, Steinberg D. The oxidative modification hypothesis of atherosclerosis: Does it hold for humans? Trends Cardiovasc Med 2001;11(3/4):93–102.

    Google Scholar 

  3. Rader DJ. High-density lipoproteins and atherosclerosis. Am J Cardiol 2002;90(8A):62i–70i.

    Google Scholar 

  4. Van Lenten BJ, Navab M, Shih D, Fogelman AM, Lusis AJ. The role of high-density lipoproteins in oxidation and inflammation. Trends Cardiovasc Med 2001;11(3/4):155–161.

    Google Scholar 

  5. Hessler JR, Robertson AL, Jr., Chisolm GM, 3rd. LDL-induced cytotoxicity and its inhibition by HDL in human vascular smooth muscle and endothelial cells in culture. Atherosclerosis 1979;32(3):213–229.

    Google Scholar 

  6. Colles SM, Maxson JM, Carlson SG, Chisolm GM. Oxidized LDLinduced injury and apoptosis in atherosclerosis. Potential roles for oxysterols. Trends Cardiovasc Med 2001;11(3/4):131–138.

    Google Scholar 

  7. Goldstein JL, Ho YK, Basu SK, Brown MS. Binding site on macrophages that mediates uptake and degradation of acetylated low density lipoprotein, producing massive cholesterol deposition. Proc Natl Acad Sci USA 1979;76(1):333–337.

    Google Scholar 

  8. Fogelman AM, Shechter I, Seager J, Hokom M, Child JS, Edwards PA. Malondialdehyde alteration of low density lipoproteins leads to cholesteryl ester accumulation in human monocyte-macrophages. Proc Natl Acad Sci USA 1980;77(4):2214–2218.

    Google Scholar 

  9. Henriksen T, Mahoney EM, Steinberg D. Enhanced macrophage degradation of low density lipoprotein previously incubated with cultured endothelial cells: Recognition by receptors for acetylated low density lipoproteins. Proc Natl Acad Sci USA 1981;78(10):6499–6503.

    Google Scholar 

  10. Steinberg D, Parthasarathy S, Carew TE, Khoo JC, Witztum JL. Beyond cholesterol: Modifications of low-density lipoprotein that increase its aherogenicity. N Engl J Med 1989;320:915–924.

    Google Scholar 

  11. Haberland ME, Fong D, Cheng L. Malondialdehyde-altered protein occurs in atheroma of Watanabe heritable hyperlipidemic rabbits. Science 1988;241(4862):215–218.

    Google Scholar 

  12. Palinski W, Rosenfeld ME, Yla-Herttuala S, Gurtner GC, Socher SS, Butler SW, Parthasarathy S, Carew TE, Steinberg D, Witztum JL. Low density lipoprotein undergoes oxidative modification in vivo. Proc Natl Acad Sci USA 1989;86(4):1372–1376.

    Google Scholar 

  13. Yla-Herttuala S, Palinski W, Rosenfeld ME, Parthasarathy S, Carew TE, Butler S, Witztum JL, Steinberg D. Evidence for the presence of oxidatively modified low density lipoprotein in atherosclerotic lesions of rabbit and man. J Clin Invest 1989;84(4):1086–1095.

    Google Scholar 

  14. Witztum JL, Steinberg D. Role of oxidized low density lipoprotein in atherogenesis. J Clin Invest 1991;88(6):1785–1792.

    Google Scholar 

  15. Parthasarathy S, Santanam N. Mechanisms of oxidation, antioxidants, and atherosclerosis. Curr Opin Lipidol 1994;5(5):371–375.

    Google Scholar 

  16. Witztum JL. The oxidation hypothesis of atherosclerosis. Lancet 1994;344(8925):793–795.

    Google Scholar 

  17. Navab M, Liao F, Hough GP, Ross LA, Van Lenten BJ, Rajavashisth TB, Lusis AJ, Laks H, Drinkwater DC, Fogelman AM. Interaction of monocytes with cocultures of human aortic wall cells involves interleukins 1 and 6 with marked increases in connexin43 message. J Clin Invest 1991;87(5):1763–1772.

    Google Scholar 

  18. Navab M, Imes SS, Hama SY, Hough GP, Ross LA, Bork RW, Valente AJ, Berliner JA, Drinkwater DC, Laks H, et al. Monocyte transmigration induced by modification of lowdensity lipoprotein in cocultures of human aorticwall cells is due to induction of monocyte chemotactic protein 1 synthesis and is abolished by high density lipoprotein. J Clin Invest 1991;88(6):2039–2046.

    Google Scholar 

  19. Napoli C, D'Armiento FP, Mancini FP, Postiglione A, Witztum JL, Palumbo G, Palinski W. Fatty streak formation occurs in human fetal aortas and is greatly enhanced by maternal hypercholesterolemia. Intimal accumulation of low density lipoprotein and its oxidation precede monocyte recruitment into early atherosclerotic lesions. J Clin Invest 1997;100(11):2680–2690.

    Google Scholar 

  20. Berliner JA, Territo MC, Sevanian A, Ramin S, Kim JA, Bamshad B, Esterson M, Fogelman AM. Minimally modified low density lipoprotein stimulates monocyte endothelial interactions. J Clin Invest 1990;85(4):1260–1266.

    Google Scholar 

  21. Cushing SD, Berliner JA, Valente AJ, TerritoMC, Navab M, Parhami F, Gerrity R, Schwartz CJ, Fogelman AM. Minimally modified low density lipoprotein induces monocyte chemotactic protein 1 in human endothelial cells and smooth muscle cells. Proc Natl Acad Sci USA 1990;87(13):5134–5138.

    Google Scholar 

  22. Rajavashisth TB, Andalibi A, Territo MC, Berliner JA, Navab M, Fogelman AM, Lusis AJ. Induction of endothelial cell expression of granulocyte and macrophage colony-stimulating factors by modified low-density lipoproteins. Nature 1990;344(6263):254–257.

    Google Scholar 

  23. Cushing SD, Fogelman AM. Monocytes may amplify their recruitment into inflammatory lesions by inducing monocyte chemotactic protein. Arterioscler Thromb 1992;12(1):78–82.

    Google Scholar 

  24. Liao F, Berliner JA, Mehrabian M, Navab M, Demer LL, Lusis AJ, Fogelman AM. Minimally modified low density lipoprotein is biologically active in vivoin mice. J Clin Invest 1991;87(6):2253–2257.

    Google Scholar 

  25. Subbanagounder G, Leitinger N, Schwenke DC, Wong JW, Lee H, Rizza C, Watson AD, Faull KF, Fogelman AM, Berliner JA. Determinants of bioactivity of oxidized phospholipids. Specific oxidized fatty acyl groups at the sn-2 position. Arterioscler Thromb Vasc Biol 2000;20(10):2248–2254.

    Google Scholar 

  26. Horkko S, Bird DA, Miller E, Itabe H, Leitinger N, Subbanagounder G, Berliner JA, Friedman P, Dennis EA, Curtiss LK, Palinski W, Witztum JL. Monoclonal autoantibodies specific for oxidized phospholipids or oxidized phospholipid-protein adducts inhibit macrophage uptake of oxidized low-density lipoproteins. J Clin Invest 1999;103(1):117–128.

    Google Scholar 

  27. Shaw PX, Horkko S, Chang MK, Curtiss LK, Palinski W, Silverman GJ, Witztum JL. Natural antibodies with the T15 idiotype may act in atherosclerosis, apoptotic clearance, and protective immunity. J Clin Invest 2000;105(12):1731–1740.

    Google Scholar 

  28. Binder CJ, Horkko S, Dewan A, Chang MK, Kieu EP, Goodyear CS, Shaw PX, Palinski W, Witztum JL, Silverman GJ. Pneumococcal Anti-Inflammatory Properties of HDL 357vaccination decreases atherosclerotic lesion formation: Molecular mimicry between Streptococcus pneumoniae and oxidized LDL. Nat Med 2003;9(6):736–743.

    Google Scholar 

  29. Binder CJ, Chang MK, Shaw PX, Miller YI, Hartvigsen K, Dewan A, Witztum JL. Innate and acquired immunity in atherogenesis. Nat Med 2002;8(11):1218–1226.

    Google Scholar 

  30. Shah PK, Yano J, Reyes O, Chyu KY, Kaul S, Bisgaier CL, Drake S, Cercek B. High-dose recombinant apolipoprotein AI( milano) mobilizes tissue cholesterol and rapidly reduces plaque lipid and macrophage content in apolipoprotein e-deficient mice. Potential implications for acute plaque stabilization. Circulation 2001;103(25):3047–3050.

    Google Scholar 

  31. Zhang Y, Zanotti I, Reilly MP, Glick JM, Rothblat GH, Rader DJ. Overexpression of apolipoprotein A-I promotes reverse transport of cholesterol from macrophages to feces in vivo. Circulation 2003;108(6):661–663.

    Google Scholar 

  32. Remaley AT, Thomas F, Stonik JA, Demosky SJ, Bark SE, Neufeld EB, Bocharov AV, Vishnyakova TG, Patterson AP, Eggerman TL, Santamarina-Fojo S, Brewer HB. Synthetic amphipathic helical peptides promote lipid efflux from cells by an ABCA1-dependent and an ABCA1-independent pathway. J Lipid Res 2003;44(4):828–836.

    Google Scholar 

  33. Martinez LO, Agerholm-Larsen B, Wang N, Chen W, Tall AR. Phosphorylation of a pest sequence inABCA1promotes calpain degradation and is reversed by ApoA-I. J Biol Chem 2003;278(39):37368–37374.

    Google Scholar 

  34. Durrington PN, Mackness B, Mackness MI. Paraoxonase and atherosclerosis. Arterioscler Thromb Vasc Biol 2001;21(4):473–480.

    Google Scholar 

  35. Navab M, Hama SY, Anantharamaiah GM, Hassan K, Hough GP, Watson AD, Reddy ST, Sevanian A, Fonarow GC, Fogelman AM. Normal high density lipoprotein inhibits three steps in the formation of mildly oxidized low density lipoprotein: Steps 2 and 3. J Lipid Res 2000;41(9):1495–1508.

    Google Scholar 

  36. Navab M, Hama SY, Cooke CJ, Anantharamaiah GM, Chaddha M, Jin L, Subbanagounder G, Faull KF, Reddy ST, Miller NE, Fogelman AM. Normal high density lipoprotein inhibits three steps in the formation of mildly oxidized low density lipoprotein: Step 1. J Lipid Res 2000;41(9):1481–1494.

    Google Scholar 

  37. Parthasarathy S. Modified Lipoproteins in the Pathogenesis of Atherosclerosis. Austin, TX: RG Landes Co., 1994:91–119.

    Google Scholar 

  38. Parthasarathy S. Mechanism(s) of cell-mediated oxidation of low density lipoprotein. In: Nohl HEH, Evans CR, ed. Free Radicals in the Environment, Medicine and Toxicology. London, UK: Richelieu Press; 1994:163–179.

    Google Scholar 

  39. Badimon JJ, Badimon L, Fuster V. Regression of atherosclerotic lesions by high density lipoprotein plasma fraction in the cholesterolfed rabbit. J Clin Invest 1990;85(4):1234–1241.

    Google Scholar 

  40. Plump AS, Scott CJ, Breslow JL. Human apolipoprotein A-I gene expression increases high density lipoprotein and suppresses atherosclerosis in the apolipoprotein E-deficient mouse. Proc Natl Acad Sci USA 1994;91(20):9607–9611.

    Google Scholar 

  41. Garber DW, Datta G, Chaddha M, Palgunachari MN, Hama SY, Navab M, Fogelman AM, Segrest JP, Anantharamaiah GM. A new synthetic class A amphipathic peptide analogue protects mice from diet-induced atherosclerosis. J Lipid Res 2001;42(4):545–552.

    Google Scholar 

  42. Navab M, Anantharamaiah GM, Hama S, Garber DW, Chaddha M, Hough G, Lallone R, Fogelman AM. Oral administration of an Apo A-I mimetic Peptide synthesized from D-amino acids dramatically reduces atherosclerosis in mice independent of plasma cholesterol. Circulation 2002;105(3):290–292.

    Google Scholar 

  43. Ou J, Ou Z, Jones DW, Holzhauer S, Hatoum OA, Ackerman AW, Weihrauch DW, Gutterman DD, Guice K, Oldham KT, Hillery CA, Pritchard KA Jr. L-4F, an apolipoprotein A-1 mimetic, dramatically improves vasodilation in hypercholesterolemia and sickle cell disease. Circulation 2003;107(18):2337–2341.

    Google Scholar 

  44. Nissen SE, Tsunoda T, Tuzcu EM, Schoenhagen P, Cooper CJ, Yasin M, Eaton GM, Lauer MA, Sheldon WS, Grines CL, Halpern S, Crowe T, Blankenship JC, Kerensky R. Effect of recombinant ApoA-I Milano on coronary atherosclerosis in patients with acute coronary syndromes: A randomized controlled trial. Jama 2003;290(17):2292–2300.

    Google Scholar 

  45. Rader DJ. High-density lipoproteins as an emerging therapeutic target for atherosclerosis. Jama 2003;290(17):2322–2324.

    Google Scholar 

  46. Bisoendial RJ, Hovingh GK, Levels JH, et al. Restoration of endothelial function by increasing high-density lipoprotein in subjects with isolated low high-density lipoprotein. Circulation 2003;107(23):2944–2948.

    Google Scholar 

  47. Sevanian A, Bittolo-Bon G, Cazzolato G, Hodis H, Hwang J, Zamburlini A, Maiorino M, Ursini F. LDL-is a lipid hydroperoxideenriched circulating lipoprotein. J Lipid Res 1997;38(3):419–428.

    Google Scholar 

  48. Navab M, Anantharamaiah GM, Reddy ST, Van Lenten BJ, Ansell BJ, Fonarow GC, Vahabzadeh K, Hama S, Hough G, Kamranpour N, Berliner JA, Lusis AJ, Fogelman AM. The oxidation hypothesis of atherogenesis: The role of oxidized phospholipids and HDL. J Lipid Res 2004;45:993–1007.

    Google Scholar 

  49. Van Lenten BJ, Hama SY, de Beer FC, Stafforini DM, McIntyre TM, Prescott SM, La Du BN, Fogelman AM, Navab M. Antiinflammatory HDL becomes pro-inflammatory during the acute phase response. Loss of protective effect of HDL against LDL oxidation in aortic wall cell cocultures. J Clin Invest 1995;96(6):2758–2767.

    Google Scholar 

  50. Gabay C, Kushner I. Acute-phase proteins and other systemic responses to inflammation. N Engl J Med 1999;340(6):448–454.

    Google Scholar 

  51. Ridker PM. On evolutionary biology, inflammation, infection, and the causes of atherosclerosis. Circulation 2002;105(1):2–4.

    Google Scholar 

  52. Navab M, Hama-Levy S, Van Lenten BJ, Fonarow GC, Cardinez CJ, Castellani LW, Brennan ML, Lusis AJ, Fogelman AM, La Du BN. Mildly oxidized LDL induces an increased apolipoprotein J/paraoxonase ratio. J Clin Invest 1997;99(8):2005–2019.

    Google Scholar 

  53. Shih DM, Xia YR, Wang XP, Miller E, Castellani LW, Subbanagounder G, Cheroutre H, Faull KF, Berliner JA, Witztum JL, Lusis AJ. Combined serum paraoxonase knockout/apolipoprotein E knockout mice exhibit increased lipoprotein oxidation and atherosclerosis. J Biol Chem 2000;275(23):17527–17535.

    Google Scholar 

  54. Gowri MS, Van der Westhuyzen DR, Bridges SR, Anderson JW. Decreased Protection by HDL From Poorly Controlled Type 2 Diabetic Subjects Against LDL Oxidation May Be Due to the Abnormal Composition of HDL. Arterioscler Thromb Vasc Biol 1999;19(9):2226–2233.

    Google Scholar 

  55. Kontush A, de Faria EC, Chantepie S, Chapman MJ. Antioxidative Activity of HDL Particle Subspecies Is Impaired in Hyperalphalipoproteinemia: Relevance of Enzymatic and Physicochemical Properties. Arterioscler Thromb Vasc Biol 2004;24(3):526–533.

    Google Scholar 

  56. Navab M, Hama SY, Hough GP, Subbanagounder G, Reddy ST, Fogelman AM. A cell-free assay for detecting HDL that is dysfunctional in preventing the formation of or inactivating oxidized phospholipids. J Lipid Res 2001;42(8):1308–1317.

    Google Scholar 

  57. Ansell BJ, Navab M, Hama S, Kamranpour N, Fonarow G, Hough G, Rahmani S, Mottahedeh R, Dave R, Reddy ST, Fogelman AM. In-flammatory/antiinflammatory properties of high-density lipoprotein distinguish patients from control subjects better than high-density lipoprotein cholesterol levels and are favorably affected by simvastatin treatment. Circulation 2003;108(22):2751–2756.

    Google Scholar 

  58. Expert Panel on Detection E, and Treatment of High Blood Cholesterol in Adults. Executive Summary of the Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). JAMA 2001;285(19):2486–2497.

    Google Scholar 

  59. Macdonald DL, Terry TL, Agellon LB, Nation PN, Francis GA. Administration of tyrosyl radical-oxidized HDL inhibits the development of atherosclerosis in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 2003;23(9):1583–1588.

    Google Scholar 

  60. Bergt C, Oram JF, Heinecke JW. Oxidized HDL: The paradoxidation of lipoproteins. Arterioscler Thromb Vasc Biol 2003;23(9): 1488–1490.

    Google Scholar 

  61. Wang WQ, Merriam DL, Moses AS, Francis GA. Enhanced cholesterol efflux by tyrosyl radical-oxidized high density lipoprotein is mediated by apolipoprotein AI-AII heterodimers. J Biol Chem 1998;273(28):17391–17398.

    Google Scholar 

  62. Khovidhunkit W, Shigenaga JK, Moser AH, Feingold KR, Grunfeld C. Cholesterol efflux by acute-phase high density lipoprotein: Role of lecithin: Cholesterol acyltransferase. J Lipid Res 2001;42(6):967–975.

    Google Scholar 

  63. Pussinen PJ, Jauhiainen M, Vilkuna-Rautiainen T, Sundvall J, Vesanen M, Mattila K, Palosuo T, Alfthan G, Asikainen S. Periodontitis decreases the antiatherogenic potency of high density lipoprotein. J Lipid Res 2004;45(1):139–147.

    Google Scholar 

  64. Reddy ST, Hama S, Ng C, Grijalva V, Navab M, Fogelman AM. ATP-binding cassette transporter 1 participates in LDL oxidation by artery wall cells. Arterioscler Thromb Vasc Biol 2002;22(11):1877–1883.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin J. Ansell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ansell, B.J., Navab, M., Watson, K.E. et al. Anti-Inflammatory Properties of HDL. Rev Endocr Metab Disord 5, 351–358 (2004). https://doi.org/10.1023/B:REMD.0000045107.71895.b2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:REMD.0000045107.71895.b2

Navigation