Skip to main content

Advertisement

Log in

The Farnesoid X Receptor (FXR) as Modulator of Bile Acid Metabolism

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Russel DW. The enzymes, regulation, and genetics of bile acid synthesis. Annu Rev Biochem 2003;72:137–174.

    Google Scholar 

  2. Chiang JY. Bile acid regulation of hepatic physiology: III. Bile acids and nuclear receptors. Am J Physiol 2003;284:G349–G356.

    Google Scholar 

  3. Koopen NR, Muller M, Vonk RJ, Z imniak P, Kuipers F. Molecular mechanisms of cholestasis: Causes and consequences of impaired bile formation. Biochim Biophys Acta 1998;1408:1–17.

    Google Scholar 

  4. Forman BM, Goode E, Chen J, Oro AE, Bradley DJ, Perlmann T, Noonan DJ, Burka LT, McMorris T, Lamph WW, et al. Identification of a nuclear receptor that is activated by farnesol metabolites. Cell 1995; 81(5):687–693.

    Google Scholar 

  5. Makishima M, Okamoto AY, Repa JJ, Tu H, Learned RM, Luk A, Hull MV, Lustig KD, Mangelsdorf DJ, Shan B. Identification of a nuclear receptor for bile acids. Science 1999;284(5418):1362–1365.

    Google Scholar 

  6. Wang H, Chen J, Hollister K, Sowers LC, Forman BM. Endogenous bile acids are ligands for the nuclear receptor FXR/BAR. Mol Cell1999;3(5):543–553.

    Google Scholar 

  7. Parks DJ, Blanchard SG, Bledsoe RK, Chandra G, Consler TG, Kliewer SA, Stimmel JB, Willson TM, Zavacki AM, Moore DD, Lehmann JM. Bile acids: Natural ligands for an orphan nuclear receptor. Science 1999;284(5418):1365–1368.

    Google Scholar 

  8. Cui J, Heard TS, Yu J, Lo JL, Huang L, Li Y, Schaeffer JM, Wright SD. The amino acid residues asparagine 354 and isoleucine 372 of human farnesoid X receptor confer the receptor with high sensitivity to chenodeoxycholate. J Biol Chem 2002;277(29):25963–25969.

    Google Scholar 

  9. Maloney PR, Parks DJ, Haffner CD, Fivush AM, Chandra G, Plunket KD, Creech KL, Moore LB, Wilson JG, Lewis MC, Jones SA, FXR as Modulator of Bile Acid Metabolism 325Willson TM. Identification of a chemical tool for the orphan nuclear receptor FXR. J Med Chem 2000;43(16):2971–2974.

    Google Scholar 

  10. Gupta S, Stravitz RT, Dent P, Hylemon PB. Down-regulation of cholesterol 7alpha-hydroxylase (CYP7A1) gene expression by bile acids in primary rat hepatocytes is mediated by the c-Jun N-terminal kinase pathway. J Biol Chem 2001;276(19):15816–15822.

    Google Scholar 

  11. Zhang Y, Kast-woelbern HR, Edwards PA. Natural structural variants of the nuclear receptor farnesoid X receptor affect transcriptional activation. J Biol Chem 2003;278(1):104–110.

    Google Scholar 

  12. Maglich JM, Sluder A, Guan X, Shi Y, McKee DD, Carrick K, Kamdar K, Willson TM, Moore JT. Comparison of complete nuclear receptor sets from the human, Caenorhabditis elegans and Drosophila genomes. Genome Biol 2001;2(8)

  13. Otte K, Kranz H, Kober I, Thompson P, Hoefer M, Haubold B, Remmel B, Voss H, Kaiser C, Albers M, Cheruvallath Z, Jackson D, Casari G, Koegl M, Paabo S, Mous J, Kremoser C, Deuschle U. Identification of farnesoid X receptor beta as a novel mammalian nuclear receptor sensing lanosterol. Mol Cell Biol 2003;23(3):864–872.

    Google Scholar 

  14. Repa JJ, Mangelsdorf DJ. Nuclear receptor regulation of cholesterol and bile acid metabolism. Curr Opin Biotechnol 1999;10(6):557–563.

    Google Scholar 

  15. Downes M, Verdecia MA, Roecker AJ, Hughes R, Hogenesch JB, Kast-Woelbern HR, Bowman ME, Ferrer JL, Anisfeld AM, Edwards PA, Rosenfeld JM, Alvarez JG, Noel JP, Nicolaou KC, Evans RM. A chemical, genetic, and structural analysis of the nuclear bile acid receptor FXR. Mol Cell2003;11(4):1079–1092.

    Google Scholar 

  16. Mi LZ, Devarakonda S, Harp JM, Han Q, Pellicciari R, Willson TM, Khorasanizadeh S, Rastinejad F. Structural basis for bile acid binding and activation of the nuclear receptor FXR. Mol Cell 2003;11(4):1093–10100.

    Google Scholar 

  17. Grober J, Zaghini I, Fujii H, Jones SA, Kliewer SA, Willson TM, Ono T, Besnard P. Identification of a bile acid-responsive element in the human ileal bile acid-binding protein gene. Involvement of the farnesoid X receptor/9-cis-retinoic acid receptor heterodimer. J Biol Chem 1999;274(42):29749–29754.

    Google Scholar 

  18. Kast HR, Nguyen CM, Sinal CJ, Jones SA, Laffitte BA, Reue K, Gonzalez FJ, WillsonTM, Edwards PA. Farnesoid x-activated receptor induces apolipoprotein C-II transcription: A molecular mechanism linking plasma triglyceride levels to bile acids. Mol Endocrinol 2001;15(10):1720–1728.

    Google Scholar 

  19. Kassam A, Miao B, Young PR, Mukherjee R. Retinoid X Receptor (RXR) Agonist-induced Antagonism of Farnesoid X Receptor (FXR) Activity due to Absence of Coactivator Recruitment and Decreased DNA Binding. J Biol Chem 2003;278(12):10028–10032.

    Google Scholar 

  20. Bramlett KS, Yao S, Burris TP. Correlation of farnesoid X receptor coactivator recruitment and cholesterol 7alpha-hydroxylase gene repression by bile acids. Mol Genet Metab 2000;71(4):609–615.

    Google Scholar 

  21. Sinal CJ, Tohkin M, Miyata M, Ward JM, Lambert G, Gonzalez FJ. Targeted disruption of the nuclear receptor FXR/BAR impairs bile acid and lipid homeostasis. Cell 2000;102(6):731–744.

    Google Scholar 

  22. Kok T, Hulzebos CV, Wolters H, Havinga R, Agellon LB, Stellaard F, Shan B, Schwarz M, Kuipers F. Enterohepatic circulation of bile salts in farnesoid X receptor-deficient mice: Efficient intestinal bile salt absorption in the absence of ileal bile acid-binding protein. J Biol Chem 2003;278(43):41930–41937.

    Google Scholar 

  23. Chiang JY, Kimmel R, Weinberger C, Stroup D. Farnesoid X receptor responds to bile acids and represses cholesterol 7alpha-hydroxylase gene (CYP7A1) transcription. J Biol Chem 2000;275(15):10918–10924.

    Google Scholar 

  24. Goodwin B, Jones SA, Price RR, Watson MA, McKee DD, Moore LB, Galardi C, Wilson JG, Lewis MC, Roth ME, Maloney PR, Willson TM, Kliewer SA. A regulatory cascade of the nuclear receptors FXR, SHP-1, and LRH-1 represses bile acid biosynthesis. Mol Cell 2000;6(3):517–526.

    Google Scholar 

  25. Lu TT, Makishima M, Repa JJ, Schoonjans K, Kerr TA, Auwerx J, Mangelsdorf DJ. Molecular basis for feedback regulation of bile acid synthesis by nuclear receptors. Mol Cell 2000;6(3):507–515.

    Google Scholar 

  26. Miyake JH, Wang SL, Davis RA. Bile acid induction of cytokine expression by macrophages correlates with repression of hepatic cholesterol 7alpha-hydroxylase. J Biol Chem 2000;275(29):21805–21808.

    Google Scholar 

  27. Holt JA, Luo G, Billin AN, Bisi J, McNeill YY, Kozarsky KF, Donahee M, Wang da Y, Mansfield TA, Kliewer SA, Goodwin B, Jones SA. Definition of a novel growth factor-dependent signal cascade for the suppression of bile acid biosynthesis. Genes Dev 2003;17(13):1581–1591.

    Google Scholar 

  28. Yu C, Wang F, Kan M, Jin C, Jones RB, Weinstein M, Deng CX, McKeehan WL. Elevated cholesterol metabolism and bile acid synthesis in mice lacking membrane tyrosine kinase receptor FGFR4. J Biol Chem 2000;275(20):15482–15489.

    Google Scholar 

  29. Einarsson K, Akerlund JE, Reihner E, Bjorkhem I. 12 alphahydroxylase activity in human liver and its relation to cholesterol 7 alpha-hydroxylase activity. J Lipid Res 1992;33(11):1591–1595.

    Google Scholar 

  30. Zhang M, Chiang JY. Transcriptional Regulation of the Human Sterol 12alpha-Hydroxylase Gene (CYP8B1). Roles of Hepatocyte Nuclear Factor 4alpha in Mediating Bile Acid Repression. J Biol Chem 2001;276(45):41690–41699.

    Google Scholar 

  31. Schersten T, Bjorntorp P, Ekdahl PH, Bjorkerud S. The synthesis of taurocholic and glycocholic acids by preparations of human liver II. An analysis of the stimulating effect of the L fraction. Biochim Biophys Acta 1967;141(1):155–163.

    Google Scholar 

  32. Czuba B, Vessey DA. Purification and characterization of cholyl-CoA: taurine N-acetyltransferase from the liver of domestic fowl (Gallus gallus). Biochem J 1981;195(1):263–266.

    Google Scholar 

  33. Pircher PC, Kitto JL, Petrowski ML, Tangirala RK, Bischoff ED, Schulman IG, Westin SK. Farnesoid X receptor regulates bile acid-amino acid conjugation. J Biol Chem 2003;278(30):27703–27711.

    Google Scholar 

  34. Hagenbuch B, Stieger B, Foguet M, Lubbert H, Meier PJ. Functional expression cloning and characterization of the hepatocyte Na+/bile acid cotransport system. Proc Natl Acad Sci USA 1991;88(23):10629–10633.

    Google Scholar 

  35. Stieger B, Hagenbuch B, Landmann L, Hochli M, Schroeder A, Meier PJ. In situlocalization of the hepatocytic Na+/Taurocholate cotransporting polypeptide in rat liver. Gastroenterology 1994; 107(6):1781–1787.

    Google Scholar 

  36. Denson LA, Sturm E, Echevarria W, Zimmerman TL, Makishima M, Mangelsdorf DJ, Karpen SJ. The orphan nuclear receptor, shp, mediates bile acid-induced inhibition of the rat bile acid transporter, ntcp. Gastroenterology 2001;121(1):140–147.

    Google Scholar 

  37. Abe T, Kakyo M, Tokui T, Nakagomi R, Nishio T, Nakai D, Nomura H, Unno M, Suzuki M, Naitoh T, Matsuno S, Yawo H. Identification of a novel gene family encoding human liver-specific organic anion transporter LST-1. J Biol Chem 1999;274(24):17159–17163.

    Google Scholar 

  38. Fickert P, Zollner G, Fuchsbichler A, Stumptner C, Pojer C, Zenz R, Lammert F, Stieger B, Meier PJ, Zatloukal K, Denk H, Trauner M. Effects of ursodeoxycholic and cholic acid feeding on hepatocellular transporter expression in mouse liver. Gastroenterology 2001;121(1):170–183.

    Google Scholar 

  39. Agellon LB, Torchia EC. Intracellular transport of bile acids. Biochim Biophys Acta 2000;1486(1):198–209.

    Google Scholar 

  40. Gerloff T, Stieger B, Hagenbuch B, Madon J, Landmann L, Roth J, Hofmann AF, Meier PJ. The sister of P-glycoprotein represents the canalicular bile salt export pump of mammalian liver. J Biol Chem 1998; 273(16):10046–10050.

    Google Scholar 

  41. Jansen PL, Strautnieks SS, Jacquemin E, Hadchouel M, Sokal EM, Hooiveld GJ, Koning JH, De Jager-Krikken A, Kuipers F, Stellaard F, Bijleveld CM, Gouw A, Van Goor H, Thompson RJ, Muller M. Hepatocanalicular bile salt export pump deficiency in patients with progressive familial intrahepatic cholestasis. Gastroenterology 1999;117(6):1370–1379.

    Google Scholar 

  42. Wang R, Salem M, Yousef IM, Tuchweber B, Lam P, Childs SJ, Helgason CD, Ackerley C, Phillips MJ, Ling V. Targeted inactivation of sister of P-glycoprotein gene (spgp) in mice results in nonprogressive but persistent intrahepatic cholestasis. Proc Natl Acad Sci USA 2001;98(4):2011–2016.

    Google Scholar 

  43. Ananthanarayanan M, Balasubramanian N, Makishima M, Mangelsdorf DJ, Suchy FJ. Human bile salt export pump promoter is transactivated by the farnesoidXreceptor/bile acid receptor. J Biol Chem 2001;276(31):28857–28865.

    Google Scholar 

  44. Plass JR, Mol O, Heegsma J, Geuken M, Faber KN, Jansen PL, Muller M. Farnesoid X receptor and bile salts are involved in transcriptional regulation of the gene encoding the human bile salt export pump. Hepatology 2002;35(3):589–596.

    Google Scholar 

  45. Lazaridis KN, Pham L, Tietz P, Marinelli RA, deGroen PC, Levine S, Dawson PA, LaRusso NF. Rat cholangiocytes absorb bile acids at their apical domain via the ileal sodium-dependent bile acid transporter. J Clin Invest 1997;100(11):2714–2721.

    Google Scholar 

  46. Lazaridis KN, Tietz P, Wu T, Kip S, Dawson PA, LaRusso NF. Alternative splicing of the rat sodium/bile acid transporter changes its cellular localization and transport properties. Proc Natl Acad Sci USA 2000;97(20):11092–11097.

    Google Scholar 

  47. Soroka CJ, Lee JM, Azzaroli F, Boyer JL. Cellular localization and up-regulation of multidrug resistance-associated protein 3 in hepatocytes and cholangiocytes during obstructive cholestasis in rat liver. Hepatology 2001;33(4):783–791.

    Google Scholar 

  48. Wong MH, Oelkers P, Craddock AL, Dawson PA. Expression cloning and characterization of the hamster ileal sodium-dependent bile acid transporter. J Biol Chem 1994;269(2):1340–1347.

    Google Scholar 

  49. Chen F, Ma L, Dawson PA, Sinal CJ, Sehayek E, Gonzalez FJ, Breslow J, Ananthanarayanan M, Shneider BL. Liver receptor homologue-1 mediates species-and cell line-specific bile aciddependent negative feedback regulation of the apical sodiumdependent bile acid transporter. J Biol Chem 2003;278(22):19909–19916.

    Google Scholar 

  50. Kramer W. Identification of the bile acid binding proteins in human serum by photoaffinity labeling. Biochim Biophys Acta 1995;1257(3):230–238.

    Google Scholar 

  51. Inokuchi A, Hinoshita E, IwamotoY, Kohno K, Kuwano M, Uchiumi T. Enhanced expression of the human multidrug resistance protein 3 by bile salt in human enterocytes. A transcriptional control of a plausible bile acid transporter. J Biol Chem 2001;276(50):46822–46829.

    Google Scholar 

  52. Barnes S, Buchina ES, King RJ, Mcburnett T, Taylor KB. Bile acid sulfotransferase I from rat liver sulfates bile acids and 3-hydroxy steroids: purification, N-terminal amino acid sequence, and kinetic properties. J Lipid Res 1989;30(4):529–540.

    Google Scholar 

  53. Song CS, Echchgadda I, Baek BS, Ahn SC, Oh T, Roy AK, Chatterjee B. Dehydroepiandrosterone sulfotransferase gene induction by bile Acid activated farnesoid x receptor. J Biol Chem 2001;276(45):42549–42556.

    Google Scholar 

  54. Pillot T, Ouzzine M, Fournel-gigleux S, Lafaurie C, Radominska A, Burchell B, Siest G, Magdalou J. Glucuronidation of hyodeoxycholic acid in human liver. Evidence for a selective role of UDPglucuronosyltransferase 2B4. J Biol Chem 1993;268(34):25636–25642.

    Google Scholar 

  55. Barbier O, Torra IP, Sirvent A, Claudel T, Blanquart C, Duran-Sandoval D, Kuipers F, Kosykh V, Fruchart JC, Staels B. FXR induces the UGT2B4 enzyme in hepatocytes: A potential mechanism of negative feedback control of FXR activity. Gastroenterology 2003;124(7):1926–1940.

    Google Scholar 

  56. Jansen PL, Muller M, Sturm E. Genes and cholestasis. Hepatology 2001;34(6):1067–1074.

    Google Scholar 

  57. Shneider BL, Fox VL, Schwarz KB, Watson CL, Ananthanarayanan M, Thevananther S, Christie DM, Hardikar W, Setchell KD, Mieli-Vergani G, Suchy FJ, Mowat AP. Hepatic basolateral sodiumdependent-bile acid transporter expression in two unusual cases of hypercholanemia and in extrahepatic biliary atresia. Hepatology 1997;25(5):1176–1183.

    Google Scholar 

  58. Zollner G, Fickert P, Zenz R, Fuchsbichler A, Stumptner C, Kenner L, Ferenci P, Stauber RE, Krejs GJ, Denk H, Zatloukal K, Trauner. Hepatobiliary transporter expression in percutaneous liver biopsies of patients with cholestatic liver diseases. Hepatology 2001;33(3):633–646.

    Google Scholar 

  59. Rius M, Nies AT, Hummel-eisenbeiss J, Jedlitschky G, Keppler D. Cotransport of reduced glutathione with bile salts by MRP4 (ABCC4) localized to the basolateral hepatocyte membrane. Hepatology 2003;38(2):374–384.

    Google Scholar 

  60. Zollner G, Fickert P, Fuchsbichler A, Silbert D, Wagner M, Arbeiter S, Gonzalez FJ, Marschall HU, Zatloukal K, Denk H, Trauner M. Role of nuclear bile acid receptor, FXR, in adaptive ABC transporter regulation by cholic and ursodeoxycholic acid in mouse liver, kidney and intestine. J Hepatol 2003;39(4):480–488.

    Google Scholar 

  61. Paumgartner G, Beuers U. Ursodeoxycholic acid in cholestatic liver disease: mechanisms of action and therapeutic use revisited. Hepatology 2002;36(3):525–531.

    Google Scholar 

  62. Trauner M, Meier PJ, Boyer JL. Molecular pathogenesis of cholestasis. N Engl J Med 1998;339(17):1217–1227.

    Google Scholar 

  63. Bemelmans MH, Gouma DJ, Greve JW, Buurman WA. Cytokines tumor necrosis factor and interleukin-6 in experimental biliary obstruction in mice. Hepatology 1992;15(6):1132–1136.

    Google Scholar 

  64. Liu Y, Binz J, Numerick MJ, Dennis S, Luo G, Desai B, MacKenzie KI, Mansfield TA, Kliewer SA, Goodwin B, Jones SA. Hepatoprotection by the farnesoid X receptor agonist GW4064 in rat models of intra-and extrahepatic cholestasis. J Clin Invest 2003;112:1678–1687.

    Google Scholar 

  65. Wagner M, Fickert P, Zollner G, Fuchsbichler A, Silbert D, Tsybrovskyy O, Zatloukal K, Guo GL, Schuetz JD, Gonzalez FJ, Marschall HU, Denk H, Trauner M. Role of farnesoid X receptor in determining hepatic ABC transporter expression and liver injury in bile duct-ligated mice. Gastroenterology 2003;125(3):825–838.

    Google Scholar 

  66. Pellicciari R, Fiorucci S, Camaioni E, Clerici C, Costantino G, Maloney PR, Morelli A, Parks DJ, Willson TM. 6alphaethyl-chenodeoxycholic acid (6-ECDCA), a potent and selective FXR agonist endowed with anticholestatic activity. J Med Chem 2002;45(17):3569–3572.

    Google Scholar 

  67. Claudel T, Sturm E, Duez H, Torra IP, Sirvent A, Kosykh V, Fruchart JC, Dallongeville J, Hum DW, Kuipers F, Staels B. Bile acid-activated nuclear receptor FXR suppresses apolipoprotein A-I transcription via a negative FXR response element. J Clin Invest 2002;109(7):961–971.

    Google Scholar 

  68. Claudel T, Inoue Y, Barbier O, Duran-Sandoval D, Kosykh V, Fruchart J, Fruchart JC, Gonzalez FJ, Staels B. Farnesoid X receptor agonists suppress hepatic apolipoprotein CIII expression. Gastroenterology 2003;125(2):544–555.

    Google Scholar 

  69. Dussault I, Beard R, Lin M, Hollister K, Chen J, Xiao JH, Chandraratna R, Forman BM. Identification of gene-selective modulators of the bile acid receptor FXR. J Biol Chem 2003;278(9):7027–7033.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Folkert Kuipers.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuipers, F., Claudel, T., Sturm, E. et al. The Farnesoid X Receptor (FXR) as Modulator of Bile Acid Metabolism. Rev Endocr Metab Disord 5, 319–326 (2004). https://doi.org/10.1023/B:REMD.0000045103.00467.9a

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:REMD.0000045103.00467.9a

Navigation