Skip to main content
Log in

Loss of CREB Regulation of Vascular Smooth Muscle Cell Quiescence in Diabetes

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Rangwala SM, Lazar MA. Transcriptional control of adipogenesis. Annu Rev Nutr 2000;20:535-559.

    Google Scholar 

  2. MacDougald OA, Lane MD. Transcriptional regulation of gene expression during adipocyte differentiation. Annu Rev Biochem 1995;64:345-373.

    Google Scholar 

  3. Reusch JE, Colton LA, Klemm DJ. CREB activation induces adipogenesis in 3T3-L1 cells. Mol Cell Biol 2000;20:1008-1020.

    Google Scholar 

  4. Klemm D, Leitner JW, Watson P, Nesterova A, Reusch JE, Goalstone M, Draznin B. Insulin-induced adipocyte differentiation. J Biol Chem 2001;276:28430-28435.

    Google Scholar 

  5. Reusch JEB, Klemm DJ. Inhibition of cAMP-response element-binding protein activity decreases protein kinase B/akt expression in 3T3-L1 adipocytes and induces apoptosis. J Biol Chem 2002;277:1426.

    Google Scholar 

  6. Shimomura A, Okamoto Y, Hirata Y, Kobayashi M, Kawakami K, Kiuchi K, Wakabayashi T, Hagiwara M. Dominant negative ATF1 blocks cyclic AMP-induced neurite outgrowth in PC12D cells. Journal of Neurochemistry 1998;70:1029-1034.

    Google Scholar 

  7. Heasley LE, Benedit S, Gleavy J, Johnson GL. Requirement of the adenovirus E1A transformation domain 1 for inhibition of PC12 cell neuronal differentiation. Cell Regulation 1991;2:479-489.

    Google Scholar 

  8. Sung JY, Shin SW, Ahn YS, Chung KC. Basic fibroblast growth factor-induced activation of novel CREB kinase during the differentiation of immortalized hippocampal cells. J Biol Chem 2001;276:13858.

    Google Scholar 

  9. Riccio A, Ahn S, Davenport CM, Blendy JA, Ginty DD. Mediation by a CREB family transcription factor of NGF-dependent survival of sympathetic neurons. Science 99 A.D;286:2358-2361.

  10. Pugazhenthi S, Miller E, Sable C, Young P, Heidenreich KA, Boxer LM, Reusch JEB. Insulin-like growth factor-I induces bcl-2 promoter through the transcription factor cAMP-response element-binding protein. J Biol Chem 1999;274:27529.

    Google Scholar 

  11. Pugazhenthi S, Nesterova A, Sable C, Heidenreich KA, Boxer LM, Heasley LE, Reusch JEB. Akt/protein kinase B up-regulates Bcl-2 expression through cAMP-response element-binding protein. J Biol Chem 2000;275:10761.

    Google Scholar 

  12. Esta S, Peter FJ. CCAAT/Enhancer binding protein is a neuronal transcriptional regulator activated by nerve growth factor receptor signaling. Journal of Neurochemistry 1998;70:2424-2433.

    Google Scholar 

  13. Fentzke RC, Korcarz CE, Lang RM, Lin H, Leiden JM. Dilated cardiomyopathy in transgenic mice expressing a dominant-negative CREB transcription factor in the heart. The Journal of Clinical Investigation 1998;101:2415-2426.

    Google Scholar 

  14. Fentzke R, Korcarz C, Shroff S, Lin H, Leiden J, Lang R. The left ventricular stress-velocity relation in transgenic mice expressing a dominant negative CREB transgene in the heart. J Am Soc Echocardiogr 2001;14:209-218.

    Google Scholar 

  15. Muller FU, Boknik P, Knapp J, Linck B, Luss H, Neumann J, Schmitz W. Activation and inactivation of cAMP-response element-mediated gene transcription in cardiac myocytes. Cardiovascular Research 2001;52:95-102.

    Google Scholar 

  16. Watson PA, Nesterova A, Burant CF, Klemm DJ, Reusch JE-B. Diabetes-related changes in cAMP response element-binding protein content enhance smooth muscle cell proliferation and migration. Journal of Biological Chemistry 2001;276:46142-46150.

    Google Scholar 

  17. Magenta A, Cenciarelli C, De Santa F, Fuschi P, Martelli F, Caruso M, Felsani A. MyoD stimulates RB promoter activity via the CREB/p300 nuclear transduction pathway. Molecular and Cellular Biology 2003;23:2893.

    Google Scholar 

  18. Polesskaya A, Naguibneva I, Fritsch L, Duquet A, Ait-Si-Ali S, Robin P, Vervisch A, Pritchard LL, Cole P, Harel-Bellan A. CBP/p300 and muscle differentiation: No HAT, no muscle. The EMBO Journal 2001;20:6816.

    Google Scholar 

  19. Bornfeldt KE. Intracellular signaling in arterial smooth muscle migration versus proliferation. Trends in Cardiovascular Medicine 1996;6:143-151.

    Google Scholar 

  20. Ross R. Cell biology of atherosclerosis. Annu Rev Physiol 1995;57:791-804.

    Google Scholar 

  21. Owens GR. Regulation of differentiation of vascular smooth muscle cells. Physiological Reviews 1995;75:487-517.

    Google Scholar 

  22. Owens GK, Vernon SM, Madsen CS. Molecular regulation of smooth muscle cell differentiation. Journal of Hypertension 1996;14:S55-S64.

    Google Scholar 

  23. Owens GK. Molecular control of vascular smooth muscle cell differentiation. Acta Physiol Scand 98 A.D;164:623-625.

  24. Absher PM, Schneider DJ, Baldor LC, Russell JC, Sobel BE. Increased proliferation of explanted vascular smooth muscle cells: A marker presaging atherogenesis. Atherosclerosis 1997;131:187-194.

    Google Scholar 

  25. Avena R, Mitchell M, Neville R, Sidawy A. The additive effects of glucose and insulin on the proliferation of infragenicular vascular smooth muscle cells. J Nasc Surg 1998;28:1038-1039.

    Google Scholar 

  26. Kimura I, Nagamori A, Honda R, Kobayashi S. Glycated serum stimulation of macrophages in GK-and streptozotocin-rats for the proliferation of primary smooth muscle cells of the aorta. Immunopharmacology 1998;40:105-118.

    Google Scholar 

  27. Wang Y, Zhang P, Rice AB, Bonner JC. Regulation of interleukin-1beta-induced platelet-derived growth receptor alpha experssion in rat pulmonary myofibroblasts by p38 mitogen-activated protein kinase. Journal of Biological Chemistry 2001;275:22550-22557.

    Google Scholar 

  28. Absher P, Schneider D, Baldor L, Russell J, Sobel B. The retardation of vasculopathy induced by attenuation of insulin resistance in the corpulent JCR:LA-cp rat is reflected by decreased vascular smooth muscle cell differentiation in vivo. Atheroscerosis 1999;143:245-251.

    Google Scholar 

  29. Mompeo B, Ortega F, Sarmiento L, Castano I. Ultrastructural analogies between intimal alterations in veins from diabetic patients and animals with STZ-induced diabetes. Ann Basc Surg 1999;13:294-301.

    Google Scholar 

  30. Etienne P, Pares-Herbute N, Mani-Ponset L, Gabrion J, Rabesandratana H, Herbute S, Monnier L. Phenotype modulation in primary cultures of aortic smooth muscle cells from streptozotocin-diabetic rats. Differentiation 1998;63:225-236.

    Google Scholar 

  31. Chiche J, Schlutsmeyer S, Bloch D, Monte S Jr, Filippov G, Janssens S, Rosenzweig A, Bloch K. Adenovirus-mediated gene transfer if cGMP-dependent protein kinase increases the sensitivity of cultured vascular smooth muscle cells to the antiproliferative and pro-apoptotic effects of nitric oxide/cGMP. J Biol Chem 1998;273:34263-34271.

    Google Scholar 

  32. Tintut Y, Parhami F, Bostrom K, Jackson S, Demer L. cAMP stimulates osteoblast-like differentiation of calcifying vascular cells. Potential signaling pathway for vascular calcification. J Biol Chem 1998;273:7547-7553.

    Google Scholar 

  33. Hoshiya M, Awazu M. Trapidil inhibits platlet-derived growth factor-stimulated mitogen-activated protein kinase cascade. Hypertension 1998;31:665-671.

    Google Scholar 

  34. Li Y, Fiscus R, Wu J, Yang L, Wang X. The antiproliferative effects of calcitonin gene-related peptide in different passages of cultured vascular smooth muscle cells. Neuropeptides 1997;31:503-509.

    Google Scholar 

  35. Vadiveloo P, Filonzi E, Stanton H, Hamilton J. G1 phase arrest of human smooth muscle cells by heparin, IL-4 and cAMP is linked to repression of cyclin D1 and cdk2. Atherosclerosis 1997;133:61-69.

    Google Scholar 

  36. Bornfeldt KE, Campbell JS, Koyama H, Argast GM, Leslie CC, Raines EW, Krebs EG, Ross R. The mitogen-activated protein kinase pathway can mediate growth inhibtion and proliferation in smooth muscle cells. J Clin Invest 1997;100:875-885.

    Google Scholar 

  37. Cardinaux JR, Notis JC, Zhang Q, Vo N, Craig JC, Fass DM, Brennan RG, Goodman RH. Recruitment of CREB binding protein is sufficient for CREB-mediated gene activation. Mol Cell Biol 0 AD/3/1;20:1546-1552.

  38. Klemm DJ, Watson PA, Frid MG, Dempsey EC, Schaack J, Colton LA, Nesterova A, Stenmark KR, Reusch JE. Cyclic AMP response element-binding protein content is a molecular determinant of smooth muscle cell phenotype. J Biol Chem 2001;276:46132-46141.

    Google Scholar 

  39. Watson PA, Vinson C, Nesterova A, Reusch JE-B. Content and activity of cAMP response element-binding protein regulate platelet-derived growth factor receptor-alpha content in vascular smooth muscles. Endocrinology 2002;143;2922-2929.

    Google Scholar 

  40. Ferns GA, Raines EW, Sprugel KH, Montani AS, Reidy MA, Ross R. Inhibition of neointimal smooth muscle accumulation after angioplasty by an antibody to PDGF. Science 1991;253:1129-1132.

    Google Scholar 

  41. Group ND. Diabetes in America. 1995;1-733.

  42. Stern MP. Perspectives in Diabetes: Diabetes and Cardiovascular Disease: The “common soil” hypothesis. Diabetes 1995;44:369-374.

    Google Scholar 

  43. Kronke G, Bochkov VN, Huber J, Gruber F, Bluml S, Furnkranz A, Kadl A, Binder BR, Leitinger N. Oxidized phospholipids induce expression of human heme oxygenase-1 involving activation of cAMP-responsive element binding protein (CREB). Journal of Biological Chemistry 2003;278:51006-51014.

    Google Scholar 

  44. Zhu Y, Saunders MA, Yeh H, Deng W-G, Wu KK. Dynamic regulation of Cyclooxygenase-2 promoter activity by isoforms of CCAAT/enhancer binding proteins. Journal of Biological Chemistry 2002;277:6923-6928.

    Google Scholar 

  45. Schroer K, Zhu Y, Saunders MA, Deng W-G, Xu X-M, Meyer-Kirchrath J, Wu KK. Obligatory role of cyclic adenosine monophosphate response element in cyclooxygenase-2 promoter induction and feedback regulation by inflammatory mediators. Circulation 2002;105:2760-2765.

    Google Scholar 

  46. Hungness ES, Luo GJ, Pritts TA, Sun X, Robb BW, Hershko D, Hasselgren PO. Transcription factors C/EBP-beta and-delta regulate IL-6 production in IL-1beta-stimulated human enterocytes. J Cell Physiol 2002;192:64-70.

    Google Scholar 

  47. Tokunou T, Ichiki T, Takeda K, Funakoshi Y, Iino N, Shimokawa H, Egashira K, Takeshita A. Thrombin induces interleukin-6 expression through the cAMP response element in vascular smooth muscle cells. Arteriosclerosis, Thrombosis, and Vascular Biology 2001;21:1759-1763.

    Google Scholar 

  48. Tokunou T, Ichiki T, Takeda K, Funakoshi Y, Iino N, Takeshita A. cAMP response element-binding protein mediates thrombin-induced proliferation of vascular smooth muscle cells. Arteriosclerosis, Thrombosis, and Vascular Biology 2001;21:1764-1769.

    Google Scholar 

  49. Funakoshi Y, Ichiki T, Takeda K, Tokuno T, Iino N, Takeshita A. Critical role of cAMP-response element-binding protein for angiotensin II-induced hypertrophy of vascular smooth muscle cells. Journal of Biological Chemistry 2002;277:18710-18717.

    Google Scholar 

  50. Jonasson L, Holm J, Skalli O, Bondjers G, Hansson GK. Regional accumulation of T cells, macrophages, and smooth muscle cells in the human atherosclerotic plaque. Arteriosclerosis 1986;6:131-138.

    Google Scholar 

  51. Joris I, Zand T, Nunnari JJ, Krolikowski FJ, Majno G. Studies on the pathogenesis of atherosclerosis. I. Adhesion and emigration of mononuclear cells in the aorta of hypercholesterolemic rats. Am J Pathol 1983;113:341-358.

    Google Scholar 

  52. Kitami Y, Inui H, Uno S, Inagami T. Molecular structure and transcriptional regulation of the gene for the platelet-derived growth factor alpha receptor in cultured vascular smooth muscle cells. J Clin Invest 95 A.D;96:558-567.

  53. Fukuoka T, Kitami Y, Okura T, Hiwada K. Transcriptional regulation of the platelet-derived growth factor alpha receptor gene via CCAAT/enhancer-binding protein-delta in vascular smooth muscle cells. J Biol Chem 1999;274:25576-25582.

    Google Scholar 

  54. Takata Y, Kitami Y, Okura T, Hiwada K. Peroxisome proliferation-activated receptor-gamma activation inhibits interleukin-1betamediated platelet-derived growth factor-alpha receptor gene expression via CCAAT/enhancer-binding protein-delta in vascular smooth muscle cells. J Biol Chem 2001;276:12893-12897.

    Google Scholar 

  55. Yang ZH, Kitami Y, Takata Y, Okura T, Hiwada K. Targeted overexpression of CCAAT/enhancer-binding protein-delta evokes enhanced gene transcription of platelet-derived growth factor alpha-receptor in vascular smooth muscle cells. Circ Res 2001;89:503-508.

    Google Scholar 

  56. Kelkenberg U, Wagner AH, Sarhaddar J, Hecker M, von der Leyen H. CCAAT/enhancer-binding protein decoy oligonucleotide inhibition of macrophage-rich vascular lesion formation in hypercholesterolemic rabbits. Arteriosclerosis, Thrombosis, and Vascular Biology 2002;22:949-954.

    Google Scholar 

  57. Takata Y, Kitami Y, Yang Z-H, Nakamura M, Okura T, Hiwada K. Vascular inflammation is negatively autoregulated by interaction between CCAAT/enhancer-binding protein-delta and peroxisome proliferator-activated receptor-gamma. Circulation Research 2002;91:427-433.

    Google Scholar 

  58. Linqvist A, Nilsson BO, Ekblad E, Hellstrand P. Platelet-derived growth factor receptors expressed in response to injury of differentiated vascular smooth muscle in vitro: Effects of Ca2+ and growth signals. Acta Physiol Scand 2001;173:175-184.

    Google Scholar 

  59. Hsueh WA, Jackson S, Law RE. Control of vascular cell proliferation and migration by PPAR-gamma: A new approach to the macrovascular complications of diabetes. Diabetes Care 2001;24:392-397.

    Google Scholar 

  60. Marx N, Schonbeck U, Lazar MA, Libby P, Plutzky J. Peroxisome proliferator-activated receptor gamma activators inhibit gene expression and migration in human vascular smooth muscle cells. Circ Res 1998;83:1097-1103.

    Google Scholar 

  61. Goetze S, Xi XP, Kawano H, Gotlibowski T, Fleck E, Hsueh WA, Law RE. PPAR gamma-ligands inhibit migration mediated by multiple chemoattractants in vascular smooth muscle cells. J Cardiovasc Pharmacol 1999;33:798-806.

    Google Scholar 

  62. Law RE, Meehan WP, Xi XP, Graf K, Wuthrich DA, Coats W, Faxon D, Hsueh WA. Troglitazone inhibits vascular smooth muscle cell growth and intimal hyperplasia. J Clin Invest 1996;98:1897-1905.

    Google Scholar 

  63. Koshiyama H, Shimono D, Kuwamura N, Minamikawi J, Nakamura Y. Inhibitory effect of pioglitazone on carotid arterial wall thickness in type 2 diabetes. J Clin Endocrinol Metab 2001;86:3452-3456.

    Google Scholar 

  64. Minamikawa J, Tanaka S, Yamauchi T, Inoue D, Koshiyama H. Potent inhibitory effects of troglitazone on carotid arterial wall thickness in type 2 diabetes. J Clin Endocrinol Metab 1998;83:1818-1820.

    Google Scholar 

  65. Ikeda U, Ikeda M, Oohara T, Kano S, Yaginuma T. Mitogenic action of interleukin-1 on vascular smooth muscle cells mediated by PDGF. Atherosclerosis 1990;84:183-188.

    Google Scholar 

  66. Raines EW, Dower SK, Ross R. Interleukin-1 mitogenic activity for fibroblasts and smooth muscle cells is due to PDGF-AA. Science 1989;243:393-396.

    Google Scholar 

  67. Bonin PD, Fici GJ, Singh JP. Interleukin-1 promotes proliferation of vascular smooth muscle cells in coordination with PDGF or a monocyte derived growth factor. Exp Cell Res 1989;181:475-482.

    Google Scholar 

  68. Bonner JC, Lindroos PM, Rice AB, Moomaw CR, Morgan DL. Induction of PDGF receptor-alpha in rat myofibroblasts during pulmonary fibrogenesis in vivo. Am J Physiol 1998;274:L72-L80.

    Google Scholar 

  69. Ikuno Y, Kazlasuskas A. An in vivo gene therapy approach for experimental proliferative vitreoretinopathy using the truncated platelet-derived growth factor alpha receptor. Invest Ophthamol Vis Sci 2002;43:2406-2411.

    Google Scholar 

  70. Watson PA, Nesterova A, Burant CF, Klemm DJ, Reusch JE. Diabetes-related changes in CREB content enhance smooth muscle cell proliferation and migration. J Biol Chem 2001;276:46142-46150.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reusch, J.E., Watson, P.A. Loss of CREB Regulation of Vascular Smooth Muscle Cell Quiescence in Diabetes. Rev Endocr Metab Disord 5, 209–219 (2004). https://doi.org/10.1023/B:REMD.0000032409.13963.bc

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:REMD.0000032409.13963.bc

Keywords

Navigation