Skip to main content
Log in

A Heating Module Equipped with Lanthanum Chromite-Based Heaters

  • Published:
Refractories and Industrial Ceramics Aims and scope

Abstract

A heating module for service in oxidizing gas media at temperatures up to 1700°C is proposed. Results of an analysis of the thermally stressed state of lanthanum chromite-based heaters designed in various configurations for use in the heating module are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. ”New high-temperature tube furnaces to 1800°C,” Interceram., 44(5), 364–365 (1995).

    Google Scholar 

  2. M. B. Gutman (ed.), Materials for Electric Thermal Power Units. Handbook [in Russian], Énergoatomizdat, Moscow (1987).

    Google Scholar 

  3. V. I. Bezruchenko, “A high-temperature laboratory electric furnace LVP-1700/70,” Steklo Keram., No. 5/6, 9–11 (1994).

    Google Scholar 

  4. S. A. Suvorov and A. P. Shevchik, “RF Patent No. 2123241, A method for fabrication of a heating tube element with controlled electric conductivity,” Izobreteniya, No. 34 (1998).

  5. M. A. Andrianov, V. P. Balkevich, and V. E. Sotnikov, “Lanthanum chromite used for fabricating heaters,” Ogneupory, No. 11, 42–46 (1980).

    Google Scholar 

  6. S. A. Suvorov, V. P. Migal', and E. V. Gusarova, “An analysis of transient thermal fields and thermal stresses in tubular resistance heaters,” Ogneupory, No. 3, 48–51 (1989).

    Google Scholar 

  7. B. M. Barykin, V. G. Gordon, and É. G. Spiridonov, “Nonfired conducting chromite-based materials for magnetohydrodynamic (MHD) generators,” in: High-Temperature Materials for MHD Electrical Systems [in Russian], Nauka, Moscow (1983), pp. 34–38.

    Google Scholar 

  8. N. Sakai, K. Yamaji, T. Horita, H. Yokokawa, T. Kawada, and M. Dokija, “Oxygen transport properties of La1-xCaxCrO3-? as an interconnect material of solid oxide fuel cell,” J. Electrochem. Soc., 147(9), 3178–3182 (2000).

    Google Scholar 

  9. S. A. Suvorov and A. P. Shevchik, “RF Patent No. 2104984, Multicomponent resistive material and the precursor mixture,” Izobreteniya, No. 5 (1998).

  10. B. Hawkes, The CADCAM Process, Pitman Publ., London (1988).

    Google Scholar 

  11. D. Yu. Ostrovoi, G. A. Gogotsi, S. A. Suvorov, and A. P. Shev-chik,“Strain and fracture of a ceramic based on lanthanum chromite,” Ogneup. Tekh. Keram., No. 7/8, 10-20 (2002).

    Google Scholar 

  12. I. A. Birger, B. F. Shorr, and G. B. Iosilevich, Strength Analysis of Machine Components [in Russian], Mashinostroenie, Moscow (1993).

    Google Scholar 

  13. S. A. Suvorov and A. P. Shevchik, “Chemical equilibria involving lanthanum chromite,” Novye Ogneupory, No. 12, 27–32 (2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suvorov, S.A., Shevchik, A.P. A Heating Module Equipped with Lanthanum Chromite-Based Heaters. Refractories and Industrial Ceramics 45, 196–200 (2004). https://doi.org/10.1023/B:REFR.0000036729.24986.e3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:REFR.0000036729.24986.e3

Keywords

Navigation