Skip to main content
Log in

Anisotropy of Mechanical Properties of Zirconia-Based Ceramics Tested for Bending

  • Published:
Refractories and Industrial Ceramics Aims and scope

Abstract

The effect of bending stress s of different magnitudes and signs on the fracture toughness K 1c of polycrystalline specimens of partially stabilized zirconia (PSZ) is considered. A method for testing pre-stressed PSZ specimens by Vickers indentation using a four-point bending scheme is proposed. The dimensions of the impression from a diamond pyramid and the length of the radial cracks generated thereby are determined. An anisotropy of strength properties is revealed in the specimens tested, which is explained by the involvement of two mechanisms: forcing action of an external stress on the crack opening and activation of the tetragonal- monoclinic phase transition in the tensile stress field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. E. Masaharo and S. Somia, “Microstructural development of zirconia-toughened ceramics,” Seramikkusu, 21(2), 126–134 (1986).

    Google Scholar 

  2. D. S. Rutman, Yu. S. Toropov, S. Yu. Pliner, et al., Zirconia-Based Refractory Materials [in Russian], Moscow, Metallurgiya (1985).

    Google Scholar 

  3. A. H. Heuer, “Transformation toughening in ZrO2-containing ceramics,” J. Am. Ceram. Soc., 70(10), 689–698 (1987).

    Google Scholar 

  4. G. S. A. M. Theunissen, I. S. Bouma, A. J. A. Winnubst, and A. J. Buggraaf, “Mechanical properties of ultra-fine grained zirconia ceramics,” J. Mater. Sci., 27, 4429–4438 (1992).

    Google Scholar 

  5. G. A. Gogotsi, V. I. Galenko, B. I. Ozerskii, et al., “Resistance to fracture, strength and other characteristics of Y2O3-stabilized zirconia ceramics,” Ogneup. Tekh. Keram., No. 8, 7–13 (2000).

    Google Scholar 

  6. D. V. Marshall and A. G. Evans, “Reply to comment on elastic-plastic indentation damage in ceramics: the median-radial crack system,” J. Am. Ceram. Soc., 64(12), 182–183 (1981).

    Google Scholar 

  7. J. W. Adams, R. Ruh, and K. S. Mazdiashi, “Young's modulus, flexure, and fracture of yttria-stabilized zirconia versus temperature,” J. Am. Ceram. Soc., 80(4), 903–908 (1997).

    Google Scholar 

  8. G. A. Gogotsi and E. E. Lomonova, “A Raman microprobe study of phase transformations in zirconia crystals tested by Vickers indentation,” Ogneup. Tekh. Keram., No. 6, 4–9 (2000).

    Google Scholar 

  9. V. I. Barbashov and G. Ya. Akimov, “Specific feature in the fracture of hydrostatically compressed zirconia,” Fiz. Tverd. Tela, 38(6), 1820–1822 (1996).

    Google Scholar 

  10. T. K. Gupta, F. F. Lange, and J. H. Bechtold, “Effect of stress-induced phase transformation on the properties of polycrystalline zirconia containing a metastable tetragonal phase,” J. Mater. Sci., 13, 1464–1470 (1978).

    Google Scholar 

  11. F. F. Lange, “Transformation toughening. Part 2. Contribution to fracture toughness,” J. Mater. Sci., 17, 235–239 (1982).

    Google Scholar 

  12. V. I. Barbashov, G. A. Gogotsi, G. Ya. Akimov, V. I. Timchenko, and É. V. Chaika, “A specific feature in the fracture of polycrystalline zirconia ceramics,” Ogneup. Tekh. Keram., No. 2, 5–8 (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barbashov, V.I., Tkachenko, Y.B. Anisotropy of Mechanical Properties of Zirconia-Based Ceramics Tested for Bending. Refractories and Industrial Ceramics 45, 52–54 (2004). https://doi.org/10.1023/B:REFR.0000023352.59346.1f

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:REFR.0000023352.59346.1f

Keywords

Navigation