Skip to main content
Log in

Possibilities for Optimizing the Cavity of a High-Power Continuous-Wave Gyrotron

  • Published:
Radiophysics and Quantum Electronics Aims and scope

Abstract

We calculated the optimal parameters of a low-Q cavity of a millimeter-wavelength continuous-wave gyrotron which ensure that the maximum efficiency is reached for a limited heat load on the cavity wall. The influence of the cavity optimization on the efficiency of energy recovery of a collector electron beam is considered. Stability of the operating mode to self-excitation of other modes is studied. Gyrotrons with radiation power 1 MW, frequency range 140–170 GHz, and operating modes TE22.6 and TE25.10 are studied as the example. The obtained results are generalized to gyrotrons with other operating modes and frequencies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. V. E. Zapevalov, G. G. Denisov, V. A. Flyagin, et al., Plasma Dev. Operat., 6 111 (1998).

    Google Scholar 

  2. G. I. Zarudneva, Yu. K. Kalynov, and S. A. Malygin, Radiophys. Quantum Electron., 31 No. 3, 254 (1988).

    Google Scholar 

  3. V. E. Zapevalov, Yu. K. Kalynov, A. N. Kuftin, S. A. Malygin, and E. M. Tai, Radiophys. Quantum Electron., 37 No. 3, 233 (1994).

    Google Scholar 

  4. V. L. Bratman, S. L. Novozhilov, and M. I. Petelin, Élektron.Tekhn., Ser. 1, Élektron. SVCh, No. 11, 46 (1976).

  5. S. Y. Cai, T. M. Antonsen, Jr, G. Saraph, and B. Levush, Int. J. Electron., 72 Nos. 5–6, 759 (1992).

    Google Scholar 

  6. V. L. Bratman, M. A. Moiseev, M. I. Petelin, and R. É. Érm, Radiophys. Quantum Electron., 16 No. 4, 474 (1973).

    Google Scholar 

  7. A. A. Kuraev, I. S. Kovalev, and S. V. Kolosov, Numerical Methods of Optimization in Problems of Microwave Electronics [in Russian], Nauka i Tekhnika, Minsk (1975).

    Google Scholar 

  8. V. L. Bratman, N. S. Ginzburg, G. S. Nusinovich, et al., Int. J. Electron., 51 No. 4, 541 (1981).

    Google Scholar 

  9. N. A. Zavol'sky, V. E. Zapevalov, and M. A. Moiseev, Radiophys. Quantum Electron., 44 No. 4, 318 (2001)

    Google Scholar 

  10. M. A. Moiseev, L. L. Nemirovskaya, V. E. Zapevalov, and M. A. Zavolsky, Int. J. Infrared Millimeter Waves, 18 No. 11, 2117 (1997).

    Google Scholar 

  11. G. S. Nusinovich, Élektron. Tekhn., Ser. 1,Élektron. SVCh, No. 3, 44 (1974).

  12. M. Yu. Glyavin, A. N. Kuftin, N. P. Venediktov, and V. E. Zapevalov, Int.J.Infrared Millimeter Waves, 18 No. 11, 2129 (1997).

    Google Scholar 

  13. K. Sakamoto, M. Tsuneoka, A. Kasugai, et al., Phys. Rev. Lett., 73 No. 26, 3532 (1994).

    Google Scholar 

  14. G. S. Nusinovich and R. É. Érm, Élektron. Tekhn., Ser. 1, Élektron. SVCh, No 8, 55 (1972).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zavol'sky, N.A., Zapevalov, V.E., Moiseev, M.A. et al. Possibilities for Optimizing the Cavity of a High-Power Continuous-Wave Gyrotron. Radiophysics and Quantum Electronics 47, 603–614 (2004). https://doi.org/10.1023/B:RAQE.0000049558.36460.24

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:RAQE.0000049558.36460.24

Keywords

Navigation